
TURBO PASCAL LIBRARY

Version 2.1

Paul Coxwell
30 Alford Road
Sutton-on-Sea

LN12 2HH
England

**
* *
* TURBO PASCAL LIBRARY *
* Version 2.1 *
* June 1993 *
* *
* A library of routines for Borland's Pascal compiler *
* *
**

This package may be freely copied and distributed
provided that all files, including documentation, are
supplied intact. No fee in excess of a minimal amount to
cover costs may be charged for such distribution.

All warranties, express or implied, including fitness for
any particular purpose, are disclaimed. The user assumes
full responsibility for ensuring the suitability of this
software.

No registration fee is required or requested. You are
free to use this package without payment.

Copyright (C) 1991, 1993 Paul Coxwell
All rights reserved

TABLE OF CONTENTS
===

1. INTRODUCTION 1

2. UNIT STRINGS 3
Global declarations 3
LoCase 4
UpperCase 4
LowerCase 4
DuplChar 4
DuplStr 4
TrimL 5
TrimR 5
PadL 5
PadR 5
TruncL 5
TruncR 5
JustL 6
JustR 6
JustC 6

Precede 7
Follow 7
Break 7
Span 8
Replace 8
Remove 9
StripBit7 9
FileSpecDefault 9
HexStr 10
OctStr 10
BinStr 10

Format 10
Sign options 11
Justification and fill options 12
Display of vulgar fractions 13
Control string summary 15

3. UNIT MATH & MATH87 17
FahrToCent 17
CentToFahr 17
KelvToCent 17
CentToKelv 17

InchToFtIn 18
FtInToInch 18
InchToYard 18
YardToInch 18
InchToMile 19
MileToInch 19
InchToNautMile 19
NautMileToInch 19
InchToMeter 19
MeterToInch 19

SqInchToSqFeet 19
SqFeetToSqInch 19
SqInchToSqYard 19
SqYardToSqInch 19
SqInchToSqMile 19
SqMileToSqInch 19
SqInchToAcre 19
AcreToSqInch 19
SqInchToSqMeter 20
SqMeterToSqInch 20

CuInchToCuFeet 20
CuFeetToCuInch 20
CuInchToCuYard 20
CuYardToCuInch 20
CuInchToCuMeter 20
CuMeterToCuInch 20

FluidOzToPint 20
PintToFluidOz 20
FluidOzToGals 20
GalsToFluidOz 20
FluidOzToImpPint 20
ImpPintToFluidOz 20
FluidOzToImpGals 20
ImpGalsToFluidOz 20
FluidOzToCuMeter 21
CuMetersToFluidOz 21

OunceToLbOz 21
LbOzToOunce 21
OunceToTon 21
TonToOunce 21
OunceToLongTon 21
LongTonToOunce 21
OunceToGram 21
GramToOunce 21

4. UNIT TIME 23
Global declarations 23
CombineDateTime 24
SplitDateTime 24
GetToDay 25
GetTimeNow 25
GetDateTime 25

DateValid 25
TimeValid 25
DateTimeValid 26
WordToDate 26
DateToWord 26
LeapYear 27
TimeAP 27
AdjustDate 27
AdjustTime 27
AdjustDateTime 28
SetLastDay 28

DayOfWeek 28
DayOfWeekStr 29
MonthStr 29
DayOfMonthStr 29
DateStr 29
FullDateStr 31
TimeStr 31
DateParse 33
TimeParse 35

5. UNIT STDERR 39
WriteStdErr 39

6. UNIT CRTCLERR 41
CriticalErrorDOS 42
CriticalErrorTP 42
CriticalErrorOwn 42
CriticalErrorMsg 42

7. UNIT ENHCON 45
Display attribute constants 46
Extended key handling and ReadKey function 46

ColorDisplay 48
GetMaxXY 49
GetDisplayPage 49
GetDisplayBase 49
MaxCursorSize 49
SetCursor 50
GetCursor 50
HideCursor 51
CursorHidden 51
LineCursor 51
BlockCursor 51
Insert/overwrite cursor switching 52
OrigCursor 52

CapsLock 53
NumLock 53
ScrollLock 53
InsertLock 53
ForceInsert 53
FlushKB 53

Editing routines 54
EditString 54

Marking the field 55
Basic editing 56
Restore and abort 57
Flags 58
Insert and overwrite modes 58
Field clearing and edit keys 59
Cursor control 60
String formatting 61
Miscellaneous configuration control 62

EditReal 62
Exponential notation 63
Range and conversion errors 64

EditInt 65
EditDate 66
EditTime 66

Using display windows 67
Window zero 70
DefineWindow 70
OpenWindow 71
SelectWindow 72
CloseWindow 72
HideWindow 73
ShowWindow 73
RelocateWindow 74
MoveWindow 74
WriteWindow 75
CurrentWindow 75
WindowStat 75
PurgeWindow 75
GetWindowDef 76
Windows error handling 76
WindowResult 77
ConErrorMsg 78

The on-line help system 78
Creating the help file 78
HelpInitialize 80
Index layout 83
Using help 83
General help 83
Context-sensitive help 84
PushHelpContext 85
PopHelpContext 85
Last-help facility 85
Moving the help window 86
HelpReset 86
Help system error handling 87
Restrictions and TextMode 89

APPENDIX A. UNIT INTERFACES 91

APPENDIX B. CODE DEPENDENCIES 105

APPENDIX C. REVISION HISTORY 107

APPENDIX D. DISTRIBUTION POLICY 111

1.
INTRODUCTION

===

Welcome to Turbo Pascal Library, a collection of routines
to ease the development of application programs with
Borland's Turbo Pascal compiler. This version of the library
contains units covering string manipulation, date and time
conversion and formatting, routines for the conversion of
units of measurement, improved error handling, enhanced
console input/output, windows, and an on-line help system.

Turbo Pascal Library requires an IBM PC or compatible,
DOS version 2.0 or later, and Turbo Pascal version 5.0 or
later. A fixed disk drive is not essential, but is highly
recommended for any serious development work. Some
portions of the library are written in assembler; to
modify these you will need a standard 8086 assembler,
such as Borland's Turbo Assembler. The intermediate
object code files are included so that you can modify
and recompile the Pascal source code without access to an
assembler.

The files that comprise this package are stored on
the distribution diskette in compressed form. To extract
all the code enter the command

INSTALL C:\PATH

where "C:\PATH" is the drive and path where you want the
files to be placed. Because of the incompatibility of TPU
files compiled under different versions of Turbo Pascal,
no TPU files are supplied. A batch file is included
which will compile all the units using the command-line
version of the compiler (TPC).

You should copy the TPU files to a directory that is
searched by Turbo Pascal when compiling a program. You
should also ensure that the OBJ files are in a directory
that will be searched at link time if you intend to modify
the units in any way.

The code in this package is released for public use
without payment. You are free to use, copy, and distribute
this package as widely as you wish. Your comments about
this package and suggestions for future revisions are
always welcome. The address to write to is shown on the
cover of this manual.

HAPPY PROGRAMMING!

-1-

-2-

2.
UNIT STRINGS

===

Turbo Pascal provides a fairly standard selection of
string-handling procedures and functions. This unit expands
upon those routines defined by Turbo Pascal and offers
routines for manipulating strings in a number of ways:
replication, padding, truncation, justification,
replacement, and so on.

GLOBAL DECLARATIONS

The following constant strings are defined in the
interface section of the unit:

UCaseLetters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
LCaseLetters = 'abcdefghijklmnopqrstuvwxyz';
Letters = UCaseLetters + LCaseLetters;
DecDigits = '0123456789';
HexDigits = '0123456789ABCDEF';
OctDigits = '01234567';
BinDigits = '01';

These will be found useful with many of the string
manipulation routines.

The unit also defines a new type and a global variable
which consists of four fields:

FormatConfigRec = RECORD
Fill,
Currency,
Overflow,
FracSep: CHAR;

END;

FormatConfig: FormatConfigRec =
(Fill: '*';
Currency: '$';
Overflow: '?';
FracSep: '-');

This global variable is used by the Format function, and the
fields are described in detail when appropriate.

-3-

FUNCTION LoCase (ch: CHAR): CHAR;

Turbo Pascal provides an UpCase function to convert
any character to its upper-case equivalent. This function
performs the converse function and converts a character to
its lower-case equivalent.

The character supplied as parameter ch is converted to
lower case and returned as the function's result. If the
supplied character is already lower case or is not
alphabetic, it is returned unchanged.

FUNCTION UpperCase (s: STRING): STRING;
FUNCTION LowerCase (s: STRING): STRING;

These two functions perform case conversion on an
entire string of characters. The returned string is
always equal in length to the supplied string, and all
alphabetic characters are converted to upper or lower case
as appropriate. Non-alphabetic characters, or characters
which are already in the required case, are not changed.

FUNCTION DuplChar (ch: CHAR; count: BYTE): STRING;

DuplChar returns a string of characters of the
length requested in parameter count. The character
supplied in ch is used to build the string. If count is
zero, a null string is returned.

FUNCTION DuplStr (s: STRING; count: BYTE): STRING;

This function is similar to DuplChar, but duplicates a
string of characters instead of a single character. The
returned string comprises the supplied string, s,
concatenated to itself the number of times specified by
count.

Note that the maximum length of a string in Turbo Pascal
is 255 characters. If the length of s multiplied by
count is greater than 255, then the returned string will
be truncated after the 255th character. If count is zero,
a null string is returned.

-4-

FUNCTION TrimL (s: STRING): STRING;
FUNCTION TrimR (s: STRING): STRING;

These two functions allow blanks to be trimmed from
either the beginning or end of a string of characters.
TrimL (Trim Left) returns the supplied string with all
leading blanks removed. TrimR (Trim Right) returns the
supplied string with all trailing blanks removed. If there
are no blanks, the string is returned unchanged.

Both functions regard a space (ASCII code 32 decimal,
20 hex.) and a tab (ASCII code 9) as being blanks;
trimming will stop as soon as any other character is
encountered. Both TrimL and TrimR return a null string if s
is a null string or consists of spaces and tabs only.

FUNCTION PadL (s: STRING; width: BYTE): STRING;
FUNCTION PadR (s: STRING; width: BYTE): STRING;

PadL (Pad Left) and PadR (Pad Right) allow a string to
be padded out to a specified length by the addition of spaces
to the start or end of the supplied string, s. PadL adds
spaces (ASCII code 20 hex.) to the start of the string to
make it up to the length supplied in parameter width. PadR
adds spaces to the end of the string to make it up to the
requested width.

If spaces or tabs are already present at the start or end
of the supplied string they are not removed. To justify a
string by removing existing blanks and then adding those
required, use the justify functions described below.

If the supplied string is a null, both functions
return a string of spaces of the specified length. If the
length of the supplied string is already equal to or greater
than the specified width it is returned unchanged. PadL and
PadR will never return a string of less than the specified
width, but may return one which is longer.

FUNCTION TruncL (s: STRING; width: BYTE): STRING;
FUNCTION TruncR (s: STRING; width: BYTE): STRING;

These functions truncate a string to the specified
width. TruncL removes characters from the start of a string
and TruncR removes them from the end.

Both functions return a null string if width is specified
as zero, and both functions return the string unchanged
if its length is already less than or equal to the

-5-

specified width. TruncL and TruncR will never return a
string longer than the specified width, but may, therefore,
return one which is shorter.

FUNCTION JustL (s: STRING; width: BYTE): STRING;
FUNCTION JustR (s: STRING; width: BYTE): STRING;

These justification functions combine the effects of
the trim, pad, and truncate functions described above.

JustL ensures that a string is left justified
within a specified field width. All blanks are removed
from both the beginning and end of the string. The
remaining string is truncated from the right if it is
too long for the requested width or spaces are added to the
end of the string if it is too short.

JustR ensures that a string is right justified
within a specified field width. All blanks are removed
from both the beginning and end of the string, then the
remaining string is truncated from the left if it is too
long for the requested width or spaces are added to the left
of the string if it is too short.

JustL is equivalent to TrimL, TrimR, TruncR, and PadR
being applied to a string, in that order. JustR is
equivalent to TrimL, TrimR, TruncL, PadL. Both
functions, therefore, will always return a string of
the specified length by either truncating the supplied
string or padding it as required. If width is zero, a
null string is returned.

FUNCTION JustC (s: STRING; width: BYTE): STRING;

JustC (Justify Center) positions a string centrally
within the specified field width.

First, leading and trailing blanks are trimmed and the
string is truncated from the right if it is too long
(this part is identical to the JustL function). If the
remaining string is shorter than the requested length spaces
are added equally to the left and right of the string to make
it up to the required width.

If the trimmed and truncated string contains an odd
number of characters and the requested width is an even
number, or vice versa, it will not be possible to add an
equal number of spaces to the left and right of the string
in order to center it. In such cases, JustC places the

-6-

extra "odd" space at the right, leaving the string
justified slightly to the left.

JustC, like JustL and JustR, will always return a string
of the specified length. If width is specified as zero,
a null string is returned.

FUNCTION Precede (s, target: STRING): STRING;

Precede searches for a sub-string, target, within a
string, s. If the search is successful the function
returns a string consisting of all the characters up to,
but not including, the target string. If the target
string is not found, the entire string is returned
unchanged.

FUNCTION Follow (s, target: STRING): STRING;

Follow searches for a sub-string, target, within a
string, s. If the target string is found the function
returns a string consisting of all the characters that
follow the search string. If the search is unsuccessful,
Follow returns a null string.

FUNCTION Break (VAR s: STRING; d: STRING): STRING;

The Break function emulates the function of the same
name found in the SNOBOL programming language.

A string to be parsed is supplied as parameter s and a
set of delimiter characters is supplied as parameter d.
Break scans string s for the first of any of the delimiter
characters in d. The returned string consists of all
characters in the supplied string up to, but not including,
the delimiter character found. In addition, Break modifies
the string s so as to remove the characters preceding the
delimiter (i.e. the characters returned by Break are also
removed from the source string).

Note that the order of the characters in the string
of delimiters is unimportant; Break scans until it finds the
first of any of the characters. If no delimiter is found
during the search, Break returns the entire input string and
sets the input string to a null.

-7-

FUNCTION Span (VAR s: STRING; d: STRING): STRING;

Span also emulates a SNOBOL function, and is similar
in operation to Break. The difference is that Span searches
for a character which is not specified in string d,
rather than one that is.

Span searches the input string, s, checking that
each character of s is also present in string d. The scan
stops when a character is found in s which is not also
present in d. Span then returns all the characters scanned
and, like Break, removes them from the source string, s.

As with Break, the order in which the characters
are specified in d has no effect on the outcome of the call
to Span. If every character in the input string is
listed in d, Span returns the entire string and sets s to a
null string.

Break and Span provide a very powerful way to parse input
and remove each element as it is dealt with. The
string constants listed in the introduction to this unit will
be found helpful for such applications.

FUNCTION Replace (s, srch, repl: STRING): STRING;

Replace also closely emulates a SNOBOL function; the
source string, s, is searched for any of the characters
listed in the string srch. When such a character is found,
it is replaced by a character in the string repl. The search
is continued until the end of the string is reached.

Strings srch and repl should be equal in length, and
when a character in srch is located it is replaced by the
character in the equivalent position in repl (e.g. if srch
contains 'ABC' and repl contains 'XYZ' then an 'A' is
replaced with an 'X', a 'B' with a 'Y', and a 'C' with a
'Z'). The function returns a string of the same length as s,
but with all requested substitutions in place.

Note that if repl is longer than srch, then the
extra characters in repl are ignored. Similarly, if the
length of string srch is greater than that of repl, the
extra characters specified in srch are not searched for.
If either srch or repl is a null string, Replace will return
the input string unchanged.

-8-

FUNCTION Remove (s, srch: STRING): STRING;

Remove searches the source string, s, for any of
the characters listed in srch. The returned string is s
with all such characters removed.

The order in which the characters are listed in srch does
not matter; all characters matching those listed will be
deleted. If srch is a null string or the supplied string
contains none of the characters listed in srch, then s is
returned unchanged.

FUNCTION StripBit7 (s: STRING): STRING;

This function returns the supplied string with the high-
order bit of each character cleared. This converts ASCII
codes 128 through 255 (decimal) to codes 0 through 127,
thus changing symbols and foreign characters to standard
7-bit ASCII code. Another use would be to strip a parity
bit from data received over a communication channel.

The returned string is always equal in length to the
supplied string and characters which are already in the
conventional ASCII set (0 through 127 decimal) are
unaffected.

FUNCTION FileSpecDefault (s,path,name,extn: STRING): STRING;

This function is specifically designed to enable user's
input of a file path and name to be processed, and allow any
section which is absent from the input to be set to a
predetermined string.

The user's input should be passed as parameter s,
and defaults for the path, name, and file extension should be
passed in path, name, and extn, respectively. Turbo Pascal's
FSplit procedure is used to break the user's input into three
sections. If any section is missing from the user's input it
is taken from the supplied defaults; FileSpecDefault returns
a string with the three sections re-assembled.

When specifying the default path, ensure that a
final backslash is included if required. Similarly, the
extension should include the leading period delimiter.

-9-

FUNCTION HexStr (n: WORD; count: BYTE): STRING;
FUNCTION OctStr (n: WORD; count: BYTE): STRING;
FUNCTION BinStr (n: WORD; count: BYTE): STRING;

These three functions allow an integer in the range 0
through 65,535 to be coverted to a string holding the
hexadecimal, octal, or binary representation of the number.

The number to be converted should be supplied in
parameter n and the number of hexadecimal, octal, or binary
digits required in the string should be passed in parameter
count. Each function returns a string of the length
specified by count, with leading zeros if necessary. Note
that if the number of digits specified is not sufficient
to represent the number then the most-significant
digits are lost.

FUNCTION Format (n: REAL; form: STRING): STRING;

Although the standard Write and WriteLn procedures
allow a number to be output to any given field width
and number of decimal places, more control over the
display and printing of numbers is often required.

Format takes the number passed in parameter n and
returns a string suitable for printing. The contents of the
parameter form determine the exact way in which the output is
formatted. The variable FormatConfig, defined in the
interface section of the unit, also controls the way in which
some features work. This variable contains four fields:
Fill, Currency, Overflow, and FracSep. These are described
below when appropriate.

The basic formatting string closely resembles that used
with Write and WriteLn. Two numbers, separated by a colon,
specify the total width of the returned string and the number
of decimal places. The format string '10:2', for example,
specifies a total width of 10 characters and that the number
should be rounded to 2 decimal places. If either number is
omitted, or invalid, the default values are a total width
of 12 characters and zero decimal places. The format
strings '8' and '8:0', for example, are equivalent.
Format will always return a string equal in length to the
width specified. If the width is insufficient for the
number being formatted, the returned field is filled with an
overflow warning character, which defaults to a question
mark. You can change this character by making an assignment
to the Overflow field of FormatConfig.

-10-

Format (25.631, '8:2') returns ' 25.63'
Format (-46.9, '4') returns ' -47'
Format (1000, '3') returns '???'

SIGN OPTIONS

Format offers several different ways to display the
sign (positive or negative) of a number. The default is
to prefix negative numbers with a minus sign. If the
format string contains a leading "+" then a sign is added
even if the number is positive.

Format (-8.3, '6:1') returns ' -8.3'
Format (8.3, '6:1') returns ' 8.3'
Format (-20.4, '+6:1') returns ' -20.4'
Format (20.4, '+6:1') returns ' +20.4'

The sign may also be placed after the number, by
putting a "+" or "-" at the end of the format string. The
former option causes positive and negative numbers to be
displayed with a sign; the latter formats positive numbers
with a trailing space for ease of alignment of printed
columns.

Format (-32, '5-') returns ' 32-'
Format (32, '5-') returns ' 32 '
Format (3.2, '5:1+') returns ' 3.2+'
Format (-3.2, '5:1+') returns ' 3.2-'

The final sign option allows negative numbers to be
enclosed in parentheses and is specified with a "P" in front
of the size specifiers. Positive numbers are formatted with
a trailing space for ease of alignment. (Note that all
alphabetic options in the format string may be in either
upper or lower case.)

Format (123.45, 'P10:2') returns ' 123.45 '
Format (-678.9, 'P10:2') returns ' (678.90)'

It is also possible to display the absolute value of a
number by using the "A" option. This causes negative numbers
to be converted to positive numbers before formatting.

Format (-68.4, 'A8:1') returns ' 68.4'
Format (-68.4, '+A8:1') returns ' +68.4'

-11-

JUSTIFICATION AND FILL OPTIONS

There are controls for the justification of the number
and for controlling how the remainder of the field is
treated. Each of these options is controlled by adding the
appropriate character to the front of the format string.
When several options precede the size specifiers they may
appear in any order.

Placing a "C" in the control string causes numbers of
1,000 or greater (or -1,000 or lower) to have embedded
commas. This option may also be specified with a "," in the
format string.

Format (2000, '7') returns ' 2000'
Format (2000, 'C7') returns ' 2,000'

It is also possible to have values of zero displayed
as a blank field by using the "B" option. Any non-zero
value is formatted as per the rest of the format string.
Note that the zero test is performed on the number after
it is rounded for display. This means, for example,
that a value of 0.005 formatted to one decimal place
would be considered to be zero and shown as a blank field.

Format (100, 'B6:2') returns '100.00'
Format (-0.002, 'B6:2') returns ' '

It is sometimes desirable to ensure that numbers fill
the entire width of the field, such as when printing
checks. Three options allow the blanks within a formatted
number to be filled. If the format string contains an
asterisk the left of the field is filled with asterisks.
These are placed before any leading sign or currency symbol.

Format (-45, '*8:1') returns '***-45.0'
Format (12345, '*8:1') returns '*12345.0'

A similar effect can be achieved by using an "F" in the
control string, but in this case Format uses the character
assigned to the Fill field of FormatConfig. This field is
initially set to an asterisk, giving the "*" and "F" options
the same meaning unless altered by your program. Note that
an assignment to FormatConfig.Fill has no effect on the "*"
option.

Placing a "Z" in the control string causes a number to
be printed with leading zeros, and these are placed after
any sign or currency symbol. Note that the "B" option
takes precedence over all three fill options if the
rounded number is zero.

-12-

Format (2500, 'Z8:1') returns '00002500'
Format (2500, '+Z8:1') returns '+0002500'
Format (0.03, 'BZ8:1') returns ' '

A floating currency symbol can be placed in front of the
formatted amount by using a dollar sign ahead of the field
width in the control string. When combined with a sign, the
symbol is always placed after a plus, minus, or opening
parenthesis. It will also always be placed after any fill
characters.

Format (99.50, '$9:2') returns ' $99.50'
Format (-47.25, 'P$9:2') returns ' ($47.25)'
Format (1.25, 'P*$9:2') returns '***$1.25 '

The currency symbol can be changed to any other character by
an assignment to the Currency field of FormatConfig. This
would typically be done during your program's initialization
routine. Note that you must still use "$" in the string
passed to Format; only the resulting character in the
formatted string is affected by the assignment. Assigning
the null code (#0) to FormatConfig.Currency will cause the
"$" option to be ignored.

Output from Format is normally right-justified, with all
leading positions either blank or filled with the specified
fill character. This allows simple alignment when printing
figures in columns. Use of the "L" option in a format string
causes Format to left-justify the returned string, with
trailing blanks to make up the correct field width. The "*"
and "F" options may be used, in which case the specified fill
character will pad the returned number to the right. Left-
justification has no effect when the "Z" option is also
selected, since the zeros must be added to the left of the
number.

DISPLAY OF VULGAR FRACTIONS

The final group of formatting options allow the display
of numbers in vulgar fraction form instead of decimal form.
The width specifier value should be followed by ":/" and then
the value of denominator required. For example, the format
string '12:/8' will format numbers to a field width of 12
characters, rounded to the nearest eighth.

Format (1.125, '12:/8') returns ' 1-1/8 '
Format (3.623, '12:/8') returns ' 3-5/8 '

The maximum allowable value for the denominator is 99.
Formatted output always allows five character positions for
fractional part of the number, plus one extra space for the

-13-

"-" separator. This allows the integer part of the number to
be easily aligned when printing numbers in columns. The
character used to separate the integral and fractional parts
of the number can be changed by an assignment to the FracSep
field of FormatConfig.

Use of vulgar fractions automatically selects the "A"
option to force absolute values and cancels any sign options.
The "*" and "F" fill options may be used, and in addition to
their usual function will also cause any space to the right
of formatted number to be filled with the specified
character. Zero-fill is not available with vulgar fractions,
and a "Z" in the format control string is interpreted
differently: Use of this option causes values of less than 1
to be shown with a leading zero.

Format (0.25, '8:/4') returns ' 1/4 '
Format (0.25, 'Z8:/4') returns ' 0-1/4 '

The final option affecting vulgar fractions is the "R"
option to disable fraction reduction. By default, Format
will reduce any fraction to the lowest possible form; use of
the "R" option causes Format to leave the fraction in the
exact form specified, even if it could be reduced.

Format (0.5, '6:/8') returns ' 1/2 '
Format (0.5, 'R6:/8') returns ' 4/8 '

-14-

CONTROL STRING SUMMARY

[Options] [Width] [:Decimals] [:/Fraction] [Options]

Width defaults to 12 characters if not specified. Decimals
defaults to zero if not specified. Fraction may be any value
in the range 2 through 99. Leading options may be placed in
any order; upper and lower case are equivalent.

Trailing options:

+ Always add trailing plus or minus sign
- Add trailing minus if negative

Leading options:

+ Always add leading plus or minus sign
- Add leading minus if negative (default)
P Format negative numbers in parentheses
A Show absolute value of supplied number
C , Add commas for thousands
B Return blank field if result is zero
* Pad field with asterisks
F Pad field with user-defined character
Z Zero-fill or add zero before vulgar fraction
$ Add floating currency symbol
L Left-justify formatted number
R Do not reduce vulgar fractions

-15-

-16-

3.
UNIT MATH & MATH87

===

Conversion between various units of measurement is
required in a great many application programs. The MATH and
MATH87 units provide a wide range of functions for the
conversion of linear, square, and cubic measurements,
temperatures, weights, and so on.

All the routines require the passing of floating-point
numbers, and to provide best versatility the units allow you
to use regular REAL numbers or EXTENDED floating-point
numbers. The latter use the 8087 co-processor or Turbo
Pascal's emulation (see your reference manual for details).
If you wish to use regular REAL numbers, declare the MATH
unit in your program's USES statement; to use EXTENDED
floating-point variables, declare the MATH87 unit. Both
units define a new variable type, FLOAT, which is set to be
equivalent to type REAL or type EXTENDED, respectively.

In programs which make extensive use of measurements, it
is recommended that the FLOAT type variable is always used to
hold these measurements in their basic form of inches for
linear measurement, square inches for area, and cubic inches
for volume. It is then easy to perform calculations on the
variables without having to always check whether the units of
measurement are the same. You can use the conversion
routines described below when input and ouptut is required in
feet, miles, square yards, and so on. The basic unit for
liquid measure is assumed to be the fluid ounce and the basic
unit for weight is assumed to be the ounce.

Metric conversions are also included in the MATH/MATH87
unit. The basic measurement units are taken to be the meter,
square meter, cubic meter, and gram. Metric prefixes, such
as for centimeters, square kilometers, kilograms, and so on
are easily derived from these basic forms.

FUNCTION FahrToCent (FahrTemp: FLOAT): FLOAT;
FUNCTION CentToFahr (CentTemp: FLOAT): FLOAT;
FUNCTION KelvToCent (KelvTemp: FLOAT): FLOAT;
FUNCTION CentToKelv (CentTemp: FLOAT): FLOAT;

These four functions provide temperature conversions
between Fahrenheit, Centigrade, and Kelvin measurements. The
supplied temperature is converted as required and returned by
the function. For example, FahrToCent takes a Fahrenheit
temperature passed in parameter FahrTemp and returns the
Centigrade equivalent.

-17-

Direct conversions between Fahrenheit and Kelvin can be
made by using the return value of one function as the
parameter to another. For example:

K := CentToKelv(FahrToCent(F));

will convert the Fahrenheit temperature F to its Kelvin
equivalent K.

Note that no error checking is performed by these
functions; it is left entirely to your own program to ensure
that valid values (i.e. above absolute zero) are passed to
the functions.

PROCEDURE InchToFtIn (Inches: FLOAT; VAR ft, ins: FLOAT);
FUNCTION FtInToInch (ft, ins: FLOAT): FLOAT;

The FLOAT type variable, whether defined as type REAL or
type EXTENDED, has adequate capacity to allow most
measurements to be stored directly in inches. Some
applications, however, are easier to use if input and output
is separated into feet and inches; these two routines provide
this conversion.

InchToFtIn takes the measurement passed as parameter
Inches and separates it into feet and inches which are
returned in parameters ft and ins respectively. An input
value of 61, for example, will cause values of 5 and 1 to be
returned.

FtInToInch performs the converse function and combines
the two supplied parameters to return a single measurement in
inches. Note that it is quite permissible for ins to be 12
or greater. For example, if ft is passed as 3 and ins is
passed as 25, then the function will return a value of 61.

FUNCTION InchToYard (Inches: FLOAT): FLOAT;
FUNCTION YardToInch (Yards: FLOAT): FLOAT;

These two functions provide direct conversion between
inches and yards, for situations where measurements are
stored in inches but input or output must be in yards.

InchToYard takes the supplied parameter Inches and
returns a value that represents the same distance in yards.
YardToInch takes the parameter Yards and returns the
equivalent measurement in inches.

Note that negative values are permissible with all

-18-

conversion functions such as these; the returned value will
simply reflect the sign of the supplied parameter.

FUNCTION InchToMile (Inches: FLOAT): FLOAT;
FUNCTION MileToInch (Miles: FLOAT): FLOAT;
FUNCTION InchToNautMile (Inches: FLOAT): FLOAT;
FUNCTION NautMileToInch (NautMiles: FLOAT): FLOAT;

Four functions provide direct conversion between inches
and miles. InchToMile and MileToInch take the supplied
parameter and convert it using the standard statute mile of
5,280 feet. InchToNautMile and NautMileToInch provide
similar conversions based on the nautical mile of 6,080 feet.

FUNCTION InchToMeter (Inches: FLOAT): FLOAT;
FUNCTION MeterToInch (Meters: FLOAT): FLOAT;

These functions provide conversion between English and
metric linear measurements. InchToMeter takes the parameter
supplied in Inches and returns a value that represents the
metric equivalent in meters. MeterToInch performs the
reverse function.

FUNCTION SqInchToSqFeet (SqInches: FLOAT): FLOAT;
FUNCTION SqFeetToSqInch (SqFeet: FLOAT): FLOAT;
FUNCTION SqInchToSqYard (SqInches: FLOAT): FLOAT;
FUNCTION SqYardToSqInch (SqYards: FLOAT): FLOAT;
FUNCTION SqInchToSqMile (SqInches: FLOAT): FLOAT;
FUNCTION SqMileToSqInch (SqMiles: FLOAT): FLOAT;
FUNCTION SqInchToAcre (SqInches: FLOAT): : FLOAT;
FUNCTION AcreToSqInch (Acres: FLOAT): FLOAT;

This group of functions provides conversion between units
for measurements of area. Each function takes a measurement
in square inches and returns the equivalent value in the
specified unit of measurement, or takes the value in the
specified unit and returns the equivalent in square inches.
The square mile used in this conversion is based on the
statute mile of 5,280 feet.

-19-

FUNCTION SqInchToSqMeter (SqInches: FLOAT): FLOAT;
FUNCTION SqMeterToSqInch (SqMeters: FLOAT): FLOAT;

SqInchToSqMeter and SqMeterToSqInch provide conversion of
area measurements between English and metric units. Other
metric units of square measurement, such as square
centimeters or square kilometers can be easily derived from
the square-meters value.

FUNCTION CuInchToCuFeet (CuInches: FLOAT): FLOAT;
FUNCTION CuFeetToCuInch (CuFeet: FLOAT): FLOAT;
FUNCTION CuInchToCuYard (CuInches: FLOAT): FLOAT;
FUNCTION CuYardToCuInch (CuYards: FLOAT): FLOAT;

These four functions provide conversions between cubic
inches, cubic feet, and cubic yards for measurements of
volume. The parameter passed to the function is converted to
the required value and returned to the calling program.

FUNCTION CuInchToCuMeter (CuInches: FLOAT): FLOAT;
FUNCTION CuMeterToCuInch (CuMeters: FLOAT): FLOAT;

CuInchToCuMeter allows volumes given in English units to
be converted to their metric equivalent. CuMeterToCuInch
performs the converse function.

FUNCTION FluidOzToPint (FluidOz: FLOAT): FLOAT;
FUNCTION PintToFluidOz (Pints: FLOAT): FLOAT;
FUNCTION FluidOzToGals (FluidOz: FLOAT): FLOAT;
FUNCTION GalsToFluidOz (Gals: FLOAT): FLOAT;
FUNCTION FluidOzToImpPint (FluidOz: FLOAT): FLOAT;
FUNCTION ImpPintToFluidOz (ImpPints: FLOAT): FLOAT;
FUNCTION FluidOzToImpGals (FluidOz: FLOAT): FLOAT;
FUNCTION ImpGalsToFluidOz (ImpGals: FLOAT): FLOAT;

For liquid volume measurements, these functions provide
conversion between fluid ounces, pints, and gallons.

The first four functions are based on the standard
American system of 16 fluid ounces per pint. The remaining
functions use the Imperial system of measurement in which a
pint consists of 20 fluid ounces; this system is used in most
English-speaking countries that were once part of the British
Commonwealth, such as Australia and New Zealand.

-20-

FUNCTION FluidOzToCuMeter (FluidOz: FLOAT): FLOAT;
FUNCTION CuMetersToFluidOz (CuMeters: FLOAT): FLOAT;

These two functions convert between fluid ounces and the
metric system of liquid measurement. Cubic centimeters and
liters can be derived from cubic meters.

PROCEDURE OunceToLbOz (Ounces: FLOAT; VAR lb, oz: FLOAT);
FUNCTION LbOzToOunce (lb, oz: FLOAT): FLOAT;

For applications where it is required to enter or print
weights as pounds and ounces, these two routines provide
conversion to or from the total number of ounces.

OunceToLbOz takes the value passed in Ounces and returns
the equivalent weight as pounds and ounces in lb and oz
respectively. LbOzToOunce takes separate pound and ounce
measurements and returns a value that represents the total
weight in ounces. Note that the function will correctly
handle a value of oz that exceeds 16.

FUNCTION OunceToTon (Ounces: FLOAT): FLOAT;
FUNCTION TonToOunce (Tons: FLOAT): FLOAT;
FUNCTION OunceToLongTon (Ounces: FLOAT): FLOAT;
FUNCTION LongTonToOunce (LongTons: FLOAT): FLOAT;

The first two of these functions provide conversion
between ounces and the standard American ton of 2,000 pounds.
(This is also known as a short ton.) The second two
functions convert between ounces and the long ton of 2,240
pounds. This is the "standard" ton in most British
Commonwealth countries.

FUNCTION OunceToGram (Ounces: FLOAT): FLOAT;
FUNCTION GramToOunce (Grams: FLOAT): FLOAT;

OunceToGram and GramToOunce provide conversion between
the basic measurements of weight in the English and metric
systems. Other metric derivatives, such as kilograms, are
easily obtained from the basic gram.

-21-

-22-

4.
UNIT TIME

===

Many programs require the use of dates and times in some
form. Such programs range from simple disk utilities
to full accounting systems.

Turbo Pascal's own date and time functions are limited to
the setting or retrieving of the system clock and the date
and time of a disk file. This unit provides many more
routines which will be found useful for the input, output,
and manipulation of dates and times.

GLOBAL DECLARATIONS

The unit defines four new types:

DateString = STRING[9];
TimeString = STRING[13];

DateRec = RECORD
M, D: BYTE;
Y: WORD;

END;

TimeRec = RECORD
H, M, S: BYTE;

END;

The first two definitions are used to return strings from
the unit's functions. The second two provide a convenient
way to store a date or time in a single, three-field
variable. The M, D, and Y fields of type DateRec hold the
month, day, and year, respectively. Note that the field for
the year is defined as type word and the unit always expects
the year to be specified in full (e.g. 1990 should be
assigned as 1990, not just 90). The H, M, and S fields of
type TimeRec are used to hold the hours, minutes, and seconds
of a time, respectively.

The following constants and typed constants are also
defined in the interface of the unit. Their use is
described with each routine when necessary.

DateFormNumeric = 0;
DateFormAlpha = 1;
DateFormMDY = 2;
DateFormDMY = 3;
DateFormLower = 4;
DateFormZeroFill = 8;

-23-

FullDateFormMDY = 0;
FullDateFormDMY = 1;

TimeFormNormal = 0;
TimeFormNormalSec = 1;
TimeFormShort = 2;
TimeFormShortSec = 3;
TimeFormMilitary = 4;
TimeFormMilitarySec = 5;
TimeFormMilitaryHHMM = 6;

TimeFormat: BYTE = TimeFormNormal;
DateFormat: BYTE = DateFormNumeric;
FullDateFormat: BYTE = FullDateFormMDY;

TimeDelimiter: CHAR = ':';
DateDelimiter: CHAR = '/';

TimeParseDelims: TimeString = ':., ' + #9;
DateParseDelims: DateString = '/-., ' + #9;

TimeParseNow: BOOLEAN = FALSE;
DateParseToDay: BOOLEAN = FALSE;
DateParseCurYear: BOOLEAN = FALSE;
DateParseCent21: BYTE = 0;

PROCEDURE CombineDateTime (VAR DtTm: DateTime;
Dt: DateRec;
Tm: TimeRec);

PROCEDURE SplitDateTime (DtTm: DateTime;
VAR Dt: DateRec;
VAR Tm: TimeRec);

The DOS unit supplied with Turbo Pascal defines a
DateTime type which can be used in conjunction with the file
date and time routines. These two procedures provide a means
for combining separate date and time variables into one
common record and for splitting the combined record into
separate date and time records.

CombineDateTime takes the supplied date and time in Dt
and Tm and returns the variable DtTm with all six fields set.
SplitDateTime takes the values supplied in DtTm and returns
with Dt and Tm set to the specified date and time
respectively.

Note that no error checking is performed for out of range
values. Since the fields of the DateTime type are defined as
being of type WORD, then any data in the high-order byte will
be lost when passed to SplitDateTime.

-24-

PROCEDURE GetToDay (VAR Dt: DateRec);

GetToDay simply returns the current system date in the
record Dt. If, for example, the system date was December 15,
1990, then Dt would have its three fields, M, D, and Y, set
to 12, 15, and 1990 respectively.

PROCEDURE GetTimeNow (VAR Tm: TimeRec);

This procedure sets the three fields of Tm the the
current system time. All the time-handling routines
assume that the hours field, H, holds a value of 0 (midnight)
through 23 (11 p.m.). The minutes and seconds fields, M and
S, may hold a value of up to 59.

PROCEDURE GetDateTime (VAR DtTm: DateTime);

This procedure allows the current date and time to be
obtained from the system clock with a single subroutine call.
The six fields of DtTm are set to the current values for
year, month, day, hours, minutes, and seconds.

FUNCTION DateValid (Dt: DateRec): BOOLEAN;

DateValid examines the three fields within the
supplied parameter Dt and returns true if they form a valid
date.

Only dates in the range January 1, 1900 through June 6,
2079 are accepted as valid (i.e. the range of dates that
can be represented as a two-byte word). The month field,
M, must be 1 through 12, and the day field, D, must be 1
through 28, 29, 30, or 31 as appropriate to the month. A
date of February 29 will only be accepted as valid if the
year field also specifies a leap year.

FUNCTION TimeValid (Tm: TimeRec): BOOLEAN;

TimeValid checks the three fields of the variable passed
as parameter Tm and returns true if they form a valid time.
If the time in Tm is in any way invalid (minutes or seconds
greater than 59 or hours greater than 23) then the function
returns a result of false.

-25-

FUNCTION DateTimeValid (DtTm: DateTime);

DateTimeValid combines the actions of the DateValid and
TimeValid functions, allowing a validity check to be
performed on a variable of type DateTime. If the high-order
byte of any supplied field is not zero, the function returns
false, otherwise the date and time are passed to the
DateValid and TimeValid functions for checking. A value of
true will be returned only if both the date and time are
valid.

PROCEDURE WordToDate (w: WORD; VAR Dt: DateRec);

WordToDate performs the opposite conversion to
DateToWord. The date represented by the value supplied in w
is converted to a three-field date in parameter Dt.

FUNCTION DateToWord (Dt: DateRec): WORD;

This function allows a date in the form of a record to
be converted to a simple integer. DateToWord assumes
that 0 represents January 1, 1900, 1 represents January 2,
1900, and so on. The two-byte value can, therefore,
represent any date from January 1, 1900 to June 6, 2079.

There are two advantages to representing a date in this
way. First, storage requirements are reduced when many dates
must be handled because a variable of type DateRec requires
four bytes. Second, it is easy to perform calculations by
simple addition and subtraction. To do this with a variable
of type DateRec would require careful consideration with
regard to month end, year end, and leap years. The word
representation of the date accounts for all 28-, 29-, 30-, or
31-day months (e.g. 33,052 is June 30, 1990 and 33,053 is
July 1, 1990).

Note that no error checking is performed on the
supplied date. If the date in parameter Dt is invalid
in some way DateToWord will still return a value but it
will represent some other date entirely.

-26-

FUNCTION LeapYear (Y: WORD): BOOLEAN;

This function checks the year supplied as parameter Y
and returns true if it is a leap year or false if it is not.
As with the other date functions, Y must specify the year in
full (e.g. 1990 must be passed as 1990, not 90).

FUNCTION TimeAP (Tm: TimeRec): TimeString;

This function simply returns a four-character string
of 'a.m.' if the time in Tm is before noon or 'p.m.' if the
time in Tm is after noon.

PROCEDURE AdjustDate (VAR Dt: DateRec; n: INTEGER);

In order to add or subtract a given number of days
from a date specified as a variable of type DateRec,
three steps are necessary. First, the date must be
converted using the DateToWord function. Second, the
number of days adjustment required is added or deducted.
Third, the integer must be converted back to a three-field
record using WordToDate.

This procedure combines these three steps into one
routine, making such adjustments simpler in your main
program. The date variable to be adjusted should be passed
as Dt and the number of days adjustment, plus or minus,
should be passed a parameter n.

Note that no range checking is performed on the date,
so trying to adjust to before January 1, 1900 or after June
6, 2079 will produce undesired results. Given the range
of dates that this unit can handle, this should not be a
problem in most applications.

PROCEDURE AdjustTime (VAR Tm: TimeRec; n: LongInt);

AdjustTime takes the time passed in Tm and adjusts it by
the number of seconds passed in parameter n. Positive values
adjust the time forward; negative values adjust the time
backward.

Note that no indication is given if the adjustment causes
the time to pass midnight in either direction. If you must
account for the date as well as the time, use the
AdjustDateTime function.

-27-

PROCEDURE AdjustDateTime (VAR DtTm: DateTime; n: LongInt);

This routine works in a similar way to AdjustTime, but
also provides for adjustment of the date if the time
adjustment causes midnight to be passed in either direction.
The date and time are returned in DtTm after the necessary
alteration has been made.

Note that no range checking is performed on any of the
fields, so invalid dates and times supplied to AdjustDateTime
will give meaningless results. The date range limitations
listed under AdjustDate also apply.

PROCEDURE SetLastDay (VAR Dt: DateRec);

SetLastDay will be found useful in many accounting
programs which require an end-of-month date.

The month and year fields of the date variable passed
as parameter Dt should be set to the required month. The day
field, may have any value upon entry. SetLastDay will
return with the month and year fields unchanged, but will
have adjusted the day field to the last day of the specified
month. (The year field is required only for determining
whether February should have 28 or 29 days.)

FUNCTION DayOfWeek (w: WORD): BYTE;

This function should be passed a date value as parameter
w. The value must be in the form provided by the
DateToWord function.

DayOfWeek returns a number that represents the day of
the week for the specified date. Only a value of 0 through 6
will be returned:

0 = Sunday
1 = Monday
2 = Tuesday
3 = Wednesday
4 = Thursday
5 = Friday
6 = Saturday

-28-

FUNCTION DayOfWeekStr (d: BYTE): DateString;

This function converts the day-of-week value
(described above) to a string containing the name of the day.
The returned string is variable in length, to match the
number of characters in the name, and each name is in mixed
case.

If the value supplied in parameter d is greater than 6,
the function returns a null string.

FUNCTION MonthStr (M: BYTE): DateString;

This function works in a similar way to the
DayOfWeekStr function and returns the name of a month when
given its number. The returned string is variable in length,
to match the number of characters in the full name of the
month, and the names are in mixed case.

If the supplied parameter is out of range, the
function returns a null string.

FUNCTION DayOfMonthStr (D: BYTE): DateString;

This function returns a three- or four-character string
based upon the value passed in parameter D. The string
consists of the number followed by the appropriate suffix
(i.e. 1st, 2nd, 3rd, 4th, etc.).

If D is out of range, a null string is returned.

FUNCTION DateStr (Dt: DateRec): DateString;

DateStr takes a date in the parameter Dt and formats it
into a string suitable for display or printing.

There are two basic formats for the string - numeric
and alphanumeric. The default setting is numeric and
DateStr will return a string of eight characters in the
form 'mm/dd/yy' or 'dd-mm-yy' depending on whether your
system configuration is set to American or British format
with a COUNTRY line in CONFIG.SYS. For example, a date of
December 15, 1990 will be returned as '12/15/90' or
'15-12-90'. Note that the year appears in abbreviated
form as just the last two digits.

-29-

The delimiter separating the month, day, and year may be
changed by assigning a character to the global variable
DateDelimiter. Assigning '.' to DateDelimiter, for example,
would cause future calls to DateStr to return '12.15.90' or
'15.12.90' as appropriate. The character assigned to
DateDelimiter may be changed at any time; the assignment
stays in effect until another assignment to the variable is
made. The unit initializes the delimiter to a "/" or "-" for
American and British formats respectively. Note that the
country setting for DateStr is determined at run-time, not
compile-time, so any program using DateStr will always use
the current country setting.

Another global variable, DateFormat, is used to determine
the way in which DateStr builds the string it returns. The
values used are listed in the introduction to this unit.

DateFormat is initialized to DateFormNumeric, causing
DateStr to return a string of the form described above.
Assigning DateFormMDY will cause DateStr to always return a
date in American format, even if the system configuration is
set to British date format. Similarly, assigning DateFormDMY
will cause DateStr to always return a date in British format,
regardless of the country setting in the system's
configuration file.

Setting DateFormat to the constant DateFormAlpha will
cause further calls to DateStr to return a nine-character
string of the form 'dd/mmm/yy' or 'dd-mmm-yy'. The date of
December 15, 1990 shown above, for example, might be
formatted as '15-DEC-90'. (The separators would be replaced
with whatever character, if any, had been assigned to
DateDelimiter.)

Two further options may be used in conjunction with the
numeric and alphanumeric formats. The values
DateFormZeroFill and DateFormLower may be added to any of the
other values. The former causes a leading blank in the
string to be replaced by a zero. For example, a date of
January 1, 1991 would be returned as '01/01/91' instead of
' 1/01/91'. Note that without the zero-fill option single
digit numbers start with a space. This is done to ease
alignment of printed columns. A similar result is obtained
by adding DateFormZeroFill to the alphanumeric format:
' 1-JAN-91' would be replaced with '01-JAN-91'.

The second option is applicable only to the alphanumeric
format and causes the month abbreviation to be printed in
mixed upper and lower case instead of all capitals. DateStr
would return '01-Jan-91' instead of '01-JAN-91'.

A typical program sets DateFormat and DateDelimiter to
the required values once and then leaves them alone.

-30-

FUNCTION FullDateStr (Dt: DateRec): STRING;

FullDateStr provides a similar facility to that of
DateStr, but returns a longer string containing the name of
the month and the year in full.

FullDateStr may be set to format a date in two
different ways. The default setting is 'month dd, yyyy'; a
typical example of formatted output is 'January 2, 1991'.

Just as the global variable DateFormat is used to control
the way in which DateStr presents its output, so
FullDateFormat controls the way in which FullDateStr
presents output. The constant FullDateFormMDY selects
the default option described above. Assigning the constant
FullDateFormDMY to FullDateFormat causes all future calls to
FullDateStr to return a string of the form 'ddxx month
yyyy', where "xx" represents the date suffix, as returned by
the DayOfMonthStr function. The date shown in the above
example would be formatted as '2nd January 1991'.

Note that the settings of DateFormat, DateDelimiter,
and country selection have no effect on the FullDateStr
function.

FUNCTION TimeStr (Tm: TimeRec): TimeString;

TimeStr converts the time passed as parameter Tm to a
string suitable for printing or display.

There are several ways in which the output of TimeStr may
be formatted and these are determined by the value set in the
global variable TimeFormat. Several constants are provided
by the unit to enable this setting to be made.

The default format, TimeFormNormal, causes the time to
be formatted as 'hh:mm x.m.', where "x.m." is either
"a.m." or "p.m." as appropriate. The hours field is
converted to conventional 12-hour format and numbers
less than 10 have a leading space to ease alignment of
columns. Typical returned strings would be ' 2:35 p.m.'
and '12:06 a.m.'. Note that the seconds field is ignored.
If the system running the program is set to British
configuration with a COUNTRY line in CONFIG.SYS, then the
colon separator is replaced with a period, giving output such
as ' 2.35 p.m.' and '12.06 a.m.'.

-31-

The seconds field can be added to the formatted string by
the assignment of the constant TimeFormNormalSec to
TimeFormat. A typical returned string would be
' 8:05:30 p.m.'.

A shortened form of the time is available by assigning
TimeFormShort or TimeFortShortSec to TimeFormat. These
options are similar to TimeFormNormal and TimeFormNormalSec
but omit the "a.m." or "p.m." indicator. Typical returned
strings would be ' 8:05' and ' 8:05:30' respectively.

Setting TimeFormat to the constant TimeFormMilitary
causes TimeStr to return a string in military time
format 'hh:mm'. If the constant TimeFormMilitarySec is
assigned to TimeFormat, the seconds field is added.
Examples of military format with and without seconds display
would be '20:05' and '20:05:30' respectively.

The final option, TimeFormMilitaryHHMM, causes TimeStr
to return a four-character string without the
hours/minutes separator. For example, 8:25 p.m. would be
returned as '2025' and 4:45 a.m. would be formatted as
'0445'.

To clarify the way in which TimeStr works, the following
examples show the output for each format when the function is
given the time 9:10:50 p.m.:

' 9:10 p.m.' (TimeFormNormal)
' 9:10:50 p.m.' (TimeFormNormalSec)
' 9:10' (TimeFormShort)
' 9:10:50' (TimeFormShortSec)
'21:10' (TimeFormMilitary)
'21:10:50' (TimeFormMilitarySec)
'2110' (TimeFormMilitaryHHMM)

One other adjustment to the formatted output is
possible. The separating colon or period can be replaced
with another character by making an assignment to the global
variable TimeDelimiter. This separator appears between the
hours and minutes fields unless TimeFormMilitaryHHMM is
selected. The separator is also used between minutes and
seconds if the selected format displays seconds.

-32-

FUNCTION DateParse (s: STRING; VAR Dt: DateRec): BOOLEAN;

Many programs require the user to input a date using
the console and this function is intended to make such input
easier.

DateParse attempts to convert the string supplied
as parameter s to a date in record Dt. If the conversion
succeeds a result of true is returned; if the conversion
fails in any way (including invalid dates such as February
29, 1991) a value of false is returned.

DateParse is very flexible with regard to the format of
the input string. The string should consist of three
distinct parts: month, day, and year. The month may be a
number (1 through 12) or an abbreviation of the month's
name. DateParse only requires the first three letters of
the month and ignores the rest of the word. Either upper or
lower case may be used. The day and year must be numeric;
the year may be specified in full or abbreviated form (e.g.
1990 may be "1990" or just "90"). Note that the date must
be within the range January 1, 1900 through June 6, 2079 for
DateParse to return true.

Each part of the date must have a delimiter to separate
it from the other parts, and when using numeric
representation of the month the parts must be in the
correct sequence. This sequence must be month, day, year
if DateFormMDY is set or day, month, year if DateFormDMY
is set. When using the default DateFormNumeric, the
sequence is determined by the country setting in the
system's configuration file, as with DateStr. The following
are all acceptable strings using the American date format:

1/2/91 (January 2, 1991)
12.17.90 (December 17, 1990)
10-23-1990 (October 23, 1990)
7 4 91 (July 4, 1991)
09, 30, 90 (September 30, 1990)
11/20. 1990 (November 20, 1990)

If the British date format is selected with DateFormDMY or
from the CONFIG.SYS file, the following strings would be
accepted:

30 12 90 (December 30, 1990)
7/4/90 (April 7, 1990)
2, 1, 1991 (January 2, 1991)
17-12/1990 (December 17, 1990)

Note that several delimiters are permissible and may even
be mixed, as the last example shows. Spaces or tabs may
follow a delimiter and may themselves be used as delimiters.

-33-

If the alphabetic representation of the month is used,
the string may be in the order month, day, year, or day,
month, year. The following are all acceptable dates,
whichever date format is currently selected:

January 2,91 (January 2, 1991)
DEC/17/90 (December 17, 1990)
23-Oct-1990 (October 23, 1990)
4 July, 91 (July 4, 1991)
sep.30.90 (September 30, 1990)
20 nov 90 (November 20, 1990)

To clarify the way in which DateParse operates, the
following examples show an invalid string which will cause
DateParse to return a result of false (American MDY format
is assumed):

9/31/90 (There is no September 31)
1jan 90 (No day/month delimiter)
fe 23 91 (Month abbreviation too short)
14,7,1990 (There is no fourteenth month)
6 /30/91 (Spaces cannot precede delimiter)
1990 Apr 3 (Year must be last item)

The examples show that several delimiters may be used
to separate the month, day, and year fields. The global
variable DateParseDelims contains the acceptable delimiter
characters and is initialized to the string shown in the
introduction to this unit. The accepted delimiters may be
changed by assigning a new string to DateParseDelims. The
assignment of '/- ' would cause DateParse to accept only
the three characters listed as delimiters. The strings
'1/2/90', '12-30-90', and '17 DEC 90' would, therefore, be
acceptable, but '1.2.90' and 'Dec 30, 90' would not. Note
that DateParse will always accept any number of blanks
(spaces or tabs) after a delimiter; any number of blanks
may also precede or follow the string as a whole.

It is possible to have DateParse automatically supply the
current year if none is specified by setting the global
variable DateParseCurYear to true. Strings supplied to the
function can then consist of just the month and day, and
DateParse will automatically obtain the year from the system
clock. Input which specifies a year will be treated in the
usual way. DateParseCurYear is initialized to false.

Setting the global variable DateParseToDay to true also
modifies the way in which DateParse interprets the input
string. With this setting, the function will accept a null-
string input (or a string which consists entirely of blanks)
and return true with the current system date. This feature

-34-

is useful in applications where the date being entered by the
user is frequently the current date. DateParseToDay is
initialized to false.

The final option available with DateParse uses the global
variable DateParseCent21 and relates to the use of dates in
the 21st century. By default, any year entered as two digits
is assumed to be in the 20th century, so that year "xx"
becomes "19xx." Assigning a value to DateParseCent21 causes
DateParse to assume that two-digit years less than the
specified value are to be treated as "20xx." The following
examples show how DateParse interprets input when
DateParseCent21 is set to 45:

1/1/99 (January 1, 1999)
7/10/62 (July 10, 1962)
1 1 00 (January 1, 2000)
7 Dec 41 (December 7, 2041)
7 Dec 1941 (December 7, 1941)

The last example shows that a year entered as four digits
will always be interpreted exactly as entered.
DateParseCent21 is initialized to zero; if no assignment is
made by your program then all dates from 2000 onward must be
entered as four digits.

FUNCTION TimeParse (s: STRING; VAR Tm: TimeRec): BOOLEAN;

It is sometimes necessary for a program to accept the
input of a time from the console or from the command line
that started the program. This function will parse such
input and attempt to convert it into a variable of type
TimeRec.

TimeParse converts a string supplied as parameter s to a
time value in the three fields of parameter Tm. If the
conversion succeeds a result of true is returned; if the
conversion fails due to invalid input, a value of false is
returned.

TimeParse is flexible with regard to the format of the
input string. Two distinct parts are required to specify the
hours and minutes and a delimiter must separate the fields.
Times may be entered in normal or military format; in the
case of the former an "a" or "p" after the minutes field
indicates a.m. or p.m. The following are examples of
acceptable input:

10:20 (10:20 a.m.)
5.50 (5:50 a.m.)
7 25a (7:25 a.m.)

-35-

3.10 P (3:10 p.m.)
11. 0 pm (11:00 p.m.)
21:40 (9:40 p.m.)
0.15 (12:15 a.m.)

TimeParse will reject any input which has an "a" or "p" if
the hours field is less than 1 or greater than 12.
Similarly, if the minutes field is out of range, TimeParse
will return a value of false to the calling routine. Note
that there may be any number of blanks (spaces or tabs)
after the delimiter and that blanks themselves may be a
delimiter.

The above examples show the input of just hours and
minutes; the seconds field of Tm is set to zero in such
cases. It is also possible to specify the seconds field in
the input string by the addition of a second delimiter.
Examples of acceptable input are:

3:50:30 (3:50:30 a.m.)
20.10.15 (8:10:15 p.m.)
7, 4, 55P (7:04:55 p.m.)
9,0,58 a (9:00:58 a.m.)

The seconds field must come before any a.m. or p.m. indicator
or it will not be recognized (TimeParse does not scan beyond
an "a" or "p").

To clarify the way in which TimeParse operates, the
following examples show an invalid string which will cause
the function to return a result of false:

3:62 (Minutes out of range)
0130 (No hours/minutes separator)
14.00p (Mixed p.m. and military time)
2a (No minutes field)
5 :35 (Space before delimiter)

The characters acceptable as delimiters may be
changed by assigning a new string to the global
variable TimeParseDelims. The initial string is shown in the
introduction to this section. Assigning ':' would set
TimeParse to accept only the two characters specified as
delimiters. The strings '3:45p' and '15 21' would,
therefore, be acceptable, but '3.45p' and '15,21' would not.

-36-

Normally, TimeParse will not accept a null input and will
return false. Setting the global variable TimeParseNow to
true causes TimeParse to accept a null-string (or a string of
blanks) and return true with the current time from the system
clock. TimeParseNow is initially set to false when your
program starts.

-37-

-38-

5.
UNIT STDERR

===

Turbo Pascal's Write and WriteLn procedures normally send
output to the operating system's standard output device.
This allows the pipe and redirection commands to be used on
the command line to send output to a file, printer, or
another program.

Many utilities can be written to take advantage of this
redirection, which provides versatility without the need to
complicate the program. Most utility programs have the need
to produce an error message on occasions, however, and if
this message is sent to the standard output device it is
possible that it will be "lost." Although the message will
appear in the redirected output (either on the printer, in a
file, or as input to another program), it is usually far
better to have the message sent to the console.

When a Turbo Pascal program uses the CRT unit, a standard
Write or WriteLn procedure no longer sends output to the
standard output device, but always sends it the the display
console. This would provide one solution to the problem, but
requires that the program specifically assigns and opens an
output channel for all its regular output which must go to
the standard output device (for full details consult your
Turbo Pascal reference guide).

This unit offers a simple solution which avoids the need
to use the CRT unit in such cases. Only one procedure is
provided in the STDERR unit and it is used to send output to
the standard error device, which is always the console
display.

PROCEDURE WriteStdErr (s: STRING);

WriteStdErr takes the string passed as parameter s and
sends it to the standard error device. A carriage return and
line feed are also sent after the string. Because the
standard error device is always the screen, any error
messages presented using this procedure cannot be redirected
and "lost" in a file.

Note that, unlike the standard Write and WriteLn
procedures, WriteStdErr can only take a single string
argument, so any numeric output must be converted to string
format first.

-39-

While the function's primary purpose is that of
presentation of error messages, WriteStdErr can be used to
send any text to the screen. For example, a sign-on and
copyright notice could be displayed using this procedure,
ensuring that when the program's standard output is
redirected the sign-on message is still sent to the console.

-40-

6.
UNIT CRTCLERR

===

The standard IBM PC operating system incorporates an
error handler which is called whenever a critical error
occurs. Critical errors are caused by such things as a
printer out of paper, a communication port not ready to
accept data, or a disk drive with an open door.

The critical-error handler presents an error message on
the console, followed by "Abort, Retry, Ignore?" or "Abort,
Retry, Fail?" depending on the version of DOS in use. The
user may then decide whether to retry the operation (after
correcting the cause of the error, by loading a printer with
paper or inserting a disk, for example), abort the program,
or allow the program to continue by informing it that the
operation failed.

Turbo Pascal installs its own critical-error handler
which overrides these DOS messages. If a Turbo Pascal
program attempts to open a file on a drive which has no disk
in it, the operation fails and returns a suitable result code
in IOResult. In many programs this action is ideal,
especially when the screen is not used in conventional
teletype mode (i.e. the appearance of the DOS error message
would disturb the screen layout).

For some programs, however, it is more desirable that the
usual critical-error message is presented when such an error
is encountered. Most disk utility programs would fall into
this category. This unit enables the original critical-error
handler to be restored by a Turbo Pascal program.

The CRTCLERR unit defines one new type: ErrorString.
This is a string of up to 20 characters and is used to return
an error message from the function CriticalErrorMsg.

If all that is required is for a program to use the
operating system's critical-error handler throughout, then
the only step necessary is to declare the CRTCLERR unit in
the program's USES statement.

-41-

PROCEDURE CriticalErrorDOS;
PROCEDURE CriticalErrorTP;

These two procedures allow switching between Turbo
Pascal's critical-error handler (CriticalErrorTP) and the
operating system's handler (CriticalErrorDOS).

Any critical error which occurs after a call to one of
these procedures will be handled by the specified routine.
Note that declaring the CRTCLERR unit in a program's USES
statement automatically sets critical-error handling to DOS,
so it is only necessary to use these procedures if different
parts of the same program must use different critical-error
handlers.

PROCEDURE CriticalErrorOwn (ErrAddr: POINTER);

In some programs neither Turbo Pascal nor DOS can provide
the correct type of critical-error handling. An example
would be where the screen is divided into windows and
critical errors must be presented to the user by way of a
window.

In such cases, this procedure allows control to be passed
to any routine when a critical error is detected. The value
passed in parameter ErrAddr should be the address of your own
critical-error handler routine.

The exact details of how to write your own critical-error
handler are outside the scope of this manual; this procedure
is provided for those programmers who are fully conversant
with such matters. You should carefully study a good DOS
manual before attempting to use this routine.

FUNCTION CriticalErrorMsg (n: BYTE): ErrorString;

This function is provided for use in your own critical-
error handlers and may be freely called from within such a
handler.

When DOS makes a call to the critical-error handler using
interrupt 24 (hex.), the DI register holds a value which
indicates the nature of the error. If the value in DI is
passed to this function as parameter n, a string containing
the appropriate error message is returned. If the number is
not recognized, the message "Unknown error" is returned.

-42-

The codes and messages supported are:

00 Write-protect error
01 Unknown unit
02 Drive not ready
03 Unknown command
04 Data error
05 Bad request
06 Seek error
07 Unknown disk format
08 Sector not found
09 Printer out of paper
0A Write fault
0B Read fault
0C General error

-43-

-44-

7.
UNIT ENHCON

===

Many programs written for the IBM PC need to manipulate
the display in some way that is not catered for by the
standard Pascal language. Turbo Pascal's CRT unit provides
features designed specifically to take advantage of the PC's
console, such as cursor positioning and reading a single key-
stroke.

The ENHCON unit expands upon the facilities offered by
Borland's CRT unit in several ways. First, a few extra
routines are provided for controlling some low-level aspects
of the display, such as adjusting the size of the cursor.
Second, several functions are provided that allow strings and
numbers to be edited on the display; these will be found to
be useful again and again in many interactive programs that
require input from the user.

Third, a complete set of routines for handling display
windows is provided. An application program can define up to
255 different windows, each of which may set its own text
attribute and cursor, and may define a border with header and
footer text. The area of screen which is occupied by an
opened window may be saved, thus enabling the original
contents to be restored when the window is closed. It is
also possible to remove a window from the screen but preserve
its contents. These routines allow the simple development of
programs which require status lines, "pop-up" menus, and so
on.

Finally, the unit provides a simple way to implement on-
line help systems for application programs. The help text
may consist of up to 255 sections, each of which may have up
to 1,000 lines of text. Each section name appears in an
index, allowing the user to select the required topic.

This unit requires Borland's CRT unit in order to
operate, but it is not necessary for your program to
specifically include CRT in its USES statement, unless it
also accesses routines in the CRT unit directly. If your
program does use CRT, it is most important that you declare
ENHCON after CRT in your USES statement (i.e. "USES CRT,
ENHCON;" is acceptable but "USES ENHCON, CRT;" is not). The
reason for this is that ENHCON "hooks" into some of CRT's
routines in order to modify their operation.

You should be aware of the fact that the ENHCON unit
accesses memory directly and makes extensive use of BIOS
routines. This means that any program using this unit may
not work on systems that do not have full PC compatibility.
This is also true of any program that uses Turbo Pascal's own

-45-

CRT unit. As the programmer, you must make a trade-off
between compatibility and the features you would like to
implement.

DISPLAY ATTRIBUTE CONSTANTS

Turbo Pascal's CRT unit defines several text-attribute
constants for color displays, but overlooks those for
monochrome systems. The following constants may be be
assigned to the CRT unit's TextAttr variable when using a
monochrome display.

MonoNormal Normal text
MonoUnderline Underlined text
MonoIntense Intensified text
MonoIntenseUL Intensified and underlined
MonoReverse Reverse video (dark on light)
MonoNone Blank, or hidden, text

EXTENDED KEY HANDLING AND READKEY FUNCTION

The standard IBM PC keyboard provides a comprehensive set
of extended keys - keys which do not have a regular ASCII
code, such as Home, End, PgUp, PgDn, etc. Programs can make
use of these function keys in many ways, but use of the
standard ReadKey function in the CRT unit can make this
application somewhat complex, because of the way in which it
returns information about these extended keys.

Normally, keys which have a standard ASCII code, such as
letters, numbers, carriage-return, and so on, cause ReadKey
to return the appropriate ASCII code. Extended keys cause a
zero, or null, to be returned and it is then necessary to
call ReadKey a second time to get the scan code for the key.

To simplify keyboard input, ENHCON was designed to modify
the behavior of ReadKey so that it only returns a single
value for either normal ASCII characters or extended keys.
All 256 possible values of a character-type variable are
assigned in the IBM PC, the values 80 through FF hex.
representing mathematical symbols, graphics, and foreign
alphabets. Some programs may need to send one of these
characters to the display, but it is highly unlikely that
they would need to input such a character from the keyboard;
standard keyboards can only generate these codes by the Alt-
keypad method anyway.

-46-

ENHCON modifies ReadKey to use the values 80 through FF
hex. to represent extended key-strokes. The assigned values
are defined as constants in the interface section of ENHCON,
and the identifiers may be used in your program. Note that
an S, A, or C after "Key" represents Shift, Alt, or Ctrl,
respectively (e.g. "KeyCHome" is the key-stroke Ctrl-Home,
and "KeyAX" is the key-stroke Alt-X).

Constant Value Constant Value Constant Value
KeyIns 80 KeyF1 A0 KeyAA E1
KeyDel 81 KeyF2 A1 KeyAB E2
KeyUp 82 KeyF3 A2 KeyAC E3
KeyDown 83 KeyF4 A3 KeyAD E4
KeyLeft 84 KeyF5 A4 KeyAE E5
KeyRight 85 KeyF6 A5 KeyAF E6
KeyHome 86 KeyF7 A6 KeyAG E7
KeyEnd 87 KeyF8 A7 KeyAH E8
KeyPgUp 88 KeyF9 A8 KeyAI E9
KeyPgDn 89 KeyF10 A9 KeyAJ EA

KeyAK EB
KeyCLeft 8A KeySF1 B0 KeyAL EC
KeyCRight 8B KeySF2 B1 KeyAM ED
KeyCHome 8C KeySF3 B2 KeyAN EE
KeyCEnd 8D KeySF4 B3 KeyAO EF
KeyCPgUp 8E KeySF5 B4
KeyCPgDn 8F KeySF6 B5 KeyAP F0

KeySF7 B6 KeyAQ F1
KeyA0 90 KeySF8 B7 KeyAR F2
KeyA1 91 KeySF9 B8 KeyAS F3
KeyA2 92 KeySF10 B9 KeyAT F4
KeyA3 93 KeyAU F5
KeyA4 94 KeyCF1 C0 KeyAV F6
KeyA5 95 KeyCF2 C1 KeyAW F7
KeyA6 96 KeyCF3 C2 KeyAX F8
KeyA7 97 KeyCF4 C3 KeyAY F9
KeyA8 98 KeyCF5 C4 KeyAZ FA
KeyA9 99 KeyCF6 C5

KeyCF7 C6
KeyAHyphen 9A KeyCF8 C7
KeyAEquals 9B KeyCF9 C8

KeyCF10 C9
PoundSign 9C

KeyAF1 D0
KeySTab 9D KeyAF2 D1

KeyAF3 D2
KeyCPrtSc 9E KeyAF4 D3

KeyAF5 D4
KeyAF6 D5
KeyAF7 D6
KeyAF8 D7
KeyAF9 D8
KeyAF10 D9

-47-

A call to ReadKey, therefore, causes a single value to be
returned - either a standard ASCII code or one of the values
listed above. For example, the Backspace key returns a value
of 08 hex. (the ASCII code for Ctrl-H) and the F1 function
key returns A0 hex. The Alt-keypad method for entering
characters will only work for standard ASCII characters in
the range 01 through 7E, and for the code 9C hex. (156
decimal).

Note that a constant, PoundSign, has been defined as the
value 9C hex. British keyboards have the pounds-sterling
sign where American keyboards have the "#" symbol, so this
code is left unchanged to enable this symbol to be entered
correctly on such systems.

The IBM PC keyboard offers four toggles: capitals,
number, scroll, and insert lock, each changed by pressing the
appropriate lock key. The first three simply change the
status of the appropriate lock, but do not return any value
to ReadKey. For some curious reason, pressing the Ins, or
Insert, key not only toggles the lock status but also returns
an extended key code.

A good many programs make use of the Ins key to switch
between insert and overwrite modes, and use the appropriate
lock-status flag to determine the current mode. This means
that the program must disregard calls to ReadKey which return
the Ins key's code. The enhanced version of ReadKey in
ENHCON causes depressions of the Ins or Insert key to be
ignored, relieving the programmer of this extra work. This
facility can be overridden if desired, causing ReadKey to
return a code of 80 hex. when Ins is pressed. The global
boolean variable InsKeyEnable should be set true to cause the
Ins key to be treated as a regular extended key, or false to
cause ReadKey to ignore it. InsKeyEnable is set to false by
default.

FUNCTION ColorDisplay: BOOLEAN;

This function returns true if the program is running on a
system which has a color display or false if running on a
monochrome system. If the computer has both a monochrome and
a color display, the value returned indicates the type of the
currently active display.

-48-

PROCEDURE GetMaxXY (VAR x, y: BYTE);

GetMaxXY sets the variables specified as parameters x and
y to the number of columns and rows, respectively, of the
current display mode. A standard monochrome display will
return x as 80 and y as 25.

This routine will be found useful for console input and
output routines which must work with a variety of different
display adapters and modes.

FUNCTION GetDisplayPage: BYTE;

All of IBM's display adapters, except the basic MDA
(monochrome), support multiple display pages. Turbo Pascal
does not provide full support for this facility, but some
applications may benefit from using two or more pages.

The current version of ENHCON does not provide page-
switching support, but this function is used by some other
routines and was included in the unit's interface on the
grounds that it could be useful for developing such
applications.

GetDisplayPage returns the number of the currently
selected page, which will usually be zero.

FUNCTION GetDisplayBase: WORD;

Some programs need to access the display in a way which
can only be achieved by directly storing values in the
display memory. This function aids calculation of the
display address by returning the base segment address for the
currently selected display adapter and page.

GetDisplayBase will usually return B000 hex. for a
monochrome display and B800 hex. for a color display, unless
a page other than zero is selected. A description of the way
in which display memory is used is beyond the scope of this
manual; consult your system's documentation for details.

FUNCTION MaxCursorSize: BYTE;

The display adapters employed by the IBM PC allow the
size of the cursor to be adjusted by software. The cursor
size is set by specifying the starting and ending scan lines.
The top line of a character position is line zero; the number

-49-

of lines per position is dependent upon the type of display
adapter in use. The CGA color display has 8 scan lines; the
EGA color and MDA monochrome adapters both have 14 lines.

This function checks the display type in use and returns
a value that represents the highest-numbered scan line for
the current mode. A CGA system causes the returned value to
be 07 hex. and a monochrome or EGA color system sets the
returned value to 0D hex.

Note that the new VGA color adapters have a mode which
emulates the cursor of the CGA; the ENHCON unit automatically
sets a VGA display to this mode upon initialization.

PROCEDURE SetCursor (size: WORD);

This procedure adjusts the cursor size to that specified
by the parameter. Size is a two-byte value - the upper byte
represents the starting scan line and the lower byte the
ending scan line (the standard monochrome cursor of two scan
lines, for example, is represented by the value 0B0C hex.).

If your program switches to a different display mode at
any point in its operation, then the cursor size is reset to
the default for the new display mode.

Note that if the cursor is hidden, SetCursor does not
automatically make it visible again - it just sets the new
size to be used when the cursor is re-enabled. Similarly,
SetCursor cannot be used to set to disable-cursor bit - the
procedure HideCursor should be used instead. You should
consult your system's documentation for details before using
this procedure if you are unfamiliar with the way in which
the cursor can be manipulated.

FUNCTION GetCursor: WORD;

GetCursor provides the converse function to SetCursor and
returns the size of the current cursor. Like SetCursor, it
ignores the state of the cursor-hide bit and will return the
cursor size as though the cursor were actually enabled (you
should use the CursorHidden function to test the cursor-hide
bit).

-50-

PROCEDURE HideCursor (hide: BOOLEAN);

The SetCursor and GetCursor routines allow the size of
the cursor to be handled; HideCursor allows it to be hidden
and restored.

Calling this procedure with parameter hide set true
causes the cursor to be disabled by setting the hide-bit in
the cursor control word. Calling with hide set false causes
the cursor to be restored. A typical use would be to remove
the cursor from the screen while presenting the user with a
menu display.

Note that calling HideCursor does not affect the size of
the cursor; the cursor will be restored to the same size it
was before it was hidden, unless SetCursor was called in
between.

If your program switches display modes by calling
TextMode, then the cursor is automatically made visible and
reset to the default size for the new mode.

FUNCTION CursorHidden: BOOLEAN;

This function checks the cursor-control word and returns
true if the cursor is currently hidden or false if it is
visible.

Manuals for the IBM BIOS sometimes list ways in which the
cursor may be hidden, other than by setting the disable-
cursor flag in the control word. All the cursor routines in
this unit expect that the cursor will be hidden only by using
the appropriate flag and CursorHidden looks only at this
flag. So long as you only control the cursor by using the
facilities provided by ENHCON, there will be no conflict.

PROCEDURE LineCursor;
PROCEDURE BlockCursor;

The cursor-control routines above allow for maximum
flexibility when manipulating the cursor, but SetCursor
requires careful handling of the cursor's size specification.
Many programs require nothing more than the ability to select
a line cursor, a block cursor, or no cursor.

These two procedures allow simple switching between a
line or block cursor. A program may call LineCursor or
BlockCursor without any consideration as to the type of
display in use; ENHCON automatically determines the correct

-51-

values to pass to SetCursor for the requested size.

As with SetCursor, calling either of these routines does
not automatically enable the cursor if it is hidden; the
procedures simply adjust the size so that the new cursor will
appear after a call to HideCursor to re-enable it.

INSERT/OVERWRITE CURSOR SWITCHING

It has become common practice to change the size of the
cursor when the insert mode status is changed. The usual
arrangement is to have a line cursor for overwrite mode and a
block cursor for insert mode.

ENHCON allows this cursor switching to be easily
accomplished; all that is necessary is to set the global
boolean variable CursorInsert to true. The size of the
cursor is updated whenever a call to ReadKey is made and it
does not matter whether InsKeyEnable is set to true or false
(see Extended key handling, above). You should note that the
cursor switching will not take place if you call the standard
input procedures Read or ReadLn. One of the main aims of the
ENHCON unit was to simplify console input and output for the
type of display-oriented programs that are so common today,
so it is unlikely that the standard input procedures would be
used.

Should you wish to disable the cursor switching for
certain parts of your program, you may accomplish this by
setting CursorInsert back to false. The cursor may be left
as a line or a block, depending upon the state of the insert
toggle at the time, so if you want the cursor to be set to a
specific size you should call SetCursor, LineCursor,
BlockCursor, or OrigCursor immediately after.

PROCEDURE OrigCursor;

The unit automatically saves the cursor size and hide
status when your program is run and restores them when your
program terminates. This ensures that cursor changes in your
program are not carried back to the DOS prompt.

OrigCursor may be called to accomplish the same thing
part way through your program. If you have switched display
modes by calling TextMode, OrigCursor recalls the default
cursor that was set up for the new mode.

-52-

FUNCTION CapsLock: BOOLEAN;
FUNCTION NumLock: BOOLEAN;
FUNCTION ScrollLock: BOOLEAN;
FUNCTION InsertLock: BOOLEAN;

These four functions allow your program to check the
current state of each of the four keyboard toggles: capitals,
number, scroll, and insert lock. Each function returns true
if the appropriate toggle is set or false if it is clear.

InsertLock is used to check whether typed text should be
inserted in a string or overwrite the current contents and
will be found useful in developing editing routines (the
source code for the EditString routine in this unit is a
typical example). Scroll lock is used by some programs to
change the action of cursor movement keys, a spreadsheet
being a case in point. CapsLock and NumLock will probably be
used only very occasionally, but were included for
completeness.

PROCEDURE ForceInsert (Ins: BOOLEAN);

ForceInsert may be used to set the insert toggle to a
known state, at the start of a program or editing routine,
for example. If parameter Ins is true the toggle is set on
(insert mode); if Ins is false it is set off (overwrite
mode).

If the automatic insert/overwrite cursor switching is
enabled, the cursor will be updated at the next call to
ReadKey.

The inclusion of procedures to force the capitals,
number, and scroll lock toggles to a known state was
considered during the development of this unit. The decision
was made not to provide them, however, because of the
difficulty of keeping keyboard indicators synchronized with
the toggle. Many keyboards provide three lock indicators
which show the current state of the capitals, number, and
scroll toggles. Forcing specific values into these toggles
usually does not update the indicators, which results in the
light being on when the lock is off, and vice versa.

PROCEDURE FlushKB;

The IBM PC buffers keyboard input to allow type-ahead,
although the size of the buffer is extremely limited. There
are many times in a program when it is not desirable to allow
such buffering; a typical example is a check-point which asks

-53-

"Are you sure?"

Calling FlushKB causes the contents of the keyboard
buffer to be flushed, thereby preventing previous key-strokes
from being read by the next call for input. FlushKB should
be called immediately before the input routine that must not
allow buffered input to be used.

EDITING ROUTINES

The ENHCON unit provides five functions that allow
different types of data to be displayed and edited on the
screen: EditString, EditInt, EditReal, EditDate, and
EditTime.

Each routine allows the programmer to position the cursor
at the start of an editing field on the display, highlight
the field, and then accept user input. A parameter, form, is
passed to the appropriate routine and this controls the
format of the edit. Each field of this record (of type
EditFormatRec) is described in detail in the following
sections.

EditFormatRec = RECORD
Attribute: BYTE;
StartChar,
EndChar: CHAR;
MarkerAttr: BYTE;
AllowChars,
ExitKeys: CharSet;
EditKey,
RestoreKey,
AbortKey: CHAR;
NumFormat: STRING[12];
SignalError: SignalErrorProc;
Flags: WORD;

END;

FUNCTION EditString (form: EditFormatRec;
VAR s: STRING;
width: BYTE): CHAR;

This function may be called to edit any string, subject
to the string having a maximum length of 80 characters (i.e.
the largest field that will fit across a standard display
screen).

Before calling EditString the cursor should be positioned
at the first character of the desired position of the editing

-54-

field on the display. The string to be edited should be
supplied as parameter s and its maximum length should be
passed as parameter width. This value determines the number
of characters that will be used on the display for the
editing field. It is the programmer's responsibility to
ensure that the cursor position and field width are
consistent, so that the field does not run off the edge of
the display.

MARKING THE FIELD

There are two ways in which the editing field may be
highlighted on the screen. If the Attribute field of form is
set to a non-zero value, then that value is used as a text
attribute. If, for example, form.Attribute is set to
MonoReverse, then the editing field is displayed in reverse
video. Note that the whole field is highlighted to the
specified field width, even if the string, s, is shorter in
length. If Attribute is set to zero, EditString does not
change the text attribute and the field will be displayed in
whatever value was in TextAttr at the time EditString was
called.

The alternative way to mark the editing field on the
screen is to have a marker character at each end of the
field. Setting StartChar in form to a character other than
NUL (i.e. #0) causes the specified character to be displayed
immediately to the left of the first character of the editing
field. In a similar way, EndChar controls the display of a
character immediately after the last position of the field.
A typical program would use arrow characters to point to the
field being edited (e.g. character codes #16 and #17). If
you use a start- or end-of-field marker character, you must
ensure that space exists on the screen for these characters.
(You should not try to use StartChar if the editing field
starts in the first display column, for instance.) Whenever
form specifies that a start- or end-of-field marker is to be
used, EditString uses the value supplied in field MarkerAttr
as the text attribute for the markers. If MarkerAttr is
zero, the characters are displayed with whatever value was
set in TextAttr when EditString was called.

Most programs will use only one of the above methods to
mark the field being edited, but EditString allows both to be
used simultaneously if desired. If no highlighting of the
field is required, just set StartChar and EndChar to NUL and
Attribute to zero. This disables the marker characters and
causes the field to be displayed in the current text
attribute, as described above.

-55-

BASIC EDITING

EditString automatically uses six keys to permit editing:
Home, End, cursor left, cursor right, Backspace, and Delete.
The use of these keys is fairly obvious, but they are
summarized here for sake of completeness.

Home Move to start of string
End Move to end of string
Cursor Left Move left one character
Cursor Right Move right one character
Backspace Delete character to left of cursor
Delete Delete character at cursor

The exact action of some of these keys may vary depending
upon the configuration set up in form. Such details are
listed where appropriate in the following sections.

Five of the fields in the parameter form allow the
various editing keys to be defined. These fields are
AllowChars, ExitKeys, RestoreKey, AbortKey, and EditKey.
AllowChars is of type CharSet, a set of characters, and is
used to set which characters may be entered in the string.
For example, if the string being edited should only be
allowed to hold capital letters and numbers, the set
['A'..'Z', '0'..'9'] should be assigned to form.AllowChars;
any other keys pressed during the edit will then be ignored
by EditString. The interface section of ENHCON defines a set
called StandardChars, which will be found useful for general
string editing. Assigning this set to AllowChars allows any
of the standard printable characters to be entered (i.e.
ASCII characters 32 through 126 decimal).

ExitKeys is also defined as type CharSet and is used to
hold the keys which will terminate the edit and cause
EditString to return to its calling program. In many
programs, assigning the simple set [CR] will be sufficient,
allowing the carriage-return, or Enter, key to signal that
editing has been completed. Other applications may require
that several keys are available to exit from EditString. A
data entry screen which uses the cursor keys to move from one
field to another, for example, would require ExitKeys to be
set to a larger set (e.g. [CR, KeyLeft, KeyRight, KeyUp,
KeyDown, KeyF10]). Note that EditString uses the enhanced
version of ReadKey, so all keys are defined as a single
character value.

Whenever a key that is listed in ExitKeys is pressed,
EditString updates the edited string (parameter s) to the
current contents of the edit field and returns to the calling
program. The character-type result of EditString is the
character code of the key that was pressed to terminate the

-56-

edit. Using the example shown in the last paragraph, a code
of 0D hex. would be returned if the edit was terminated by
the Enter key, but A9 hex. would be returned if the user
finished the edit by pressing F10. This feature allows the
calling routine to determine which key terminated the edit so
that it may take the appropriate action (moving to the next
or previous field, for instance).

Note that it is quite permissible to define a key in both
AllowChars and ExitKeys. If this is done, pressing the key
will first enter the character into the string being edited,
then cause EditString to terminate as usual.

Before returning, EditString removes any highlighting of
the editing field. The field itself is re-written in
whatever text attribute was set when EditString was called.
If start- or end-of-field marker characters were used, they
are replaced by whatever character was on the screen
previously. Finally, the cursor is left at the first
position of the editing field (i.e. the same place as when
the edit function was called).

RESTORE AND ABORT

EditString makes a copy of the string s upon entry and
allows it to be restored at any time during the edit by the
user pressing a single key. The key to be used for this
purpose should be assigned to the RestoreKey field of form.
If, for example, RestoreKey is set to KeyF2 (value A1 hex.),
then pressing F2 will throw away any changes made to the
string since EditString was called; the cursor is returned to
the first character in the field so the user may start the
edit again. The restore feature may be disabled by assigning
NUL to form.RestoreKey.

In a similar way, a key may be assigned to AbortKey.
Pressing the abort key during an edit causes the original
string to be restored and the edit routine to terminate.
EditString returns the character code for the abort key so
that the calling routine may detect the abort and act
accordingly. If the abort facility is not required, it may
be disabled by assigning NUL to form.AbortKey.

It is acceptable for RestoreKey and AbortKey to hold the
same value so that the same key may be used for both
purposes. The restore action is performed whenever the key
is pressed, but EditString only terminates if the key was
pressed when the string had not been edited. For example,
assume that RestoreKey and AbortKey are both set to ESC. If
EditString is called and the Escape key is pressed straight
away, the string has not been edited so the routine
terminates and returns the ESC code. If the string is edited

-57-

and then Escape is pressed, the original string is restored
and the edit is allowed continue. (Pressing Escape a second
time, with no other intervening keys, would then terminate
the edit.)

FLAGS

The Flags field of form contains 16 flags, not all of
which are used in the current version of ENHCON. The
interface section of the source code lists several constants
which may be used to build the flags value for a format.
These values are summarized here and each flag is described
in detail below.

EdFlagFlushKB Flush keyboard buffer before edit
EdFlagInsert Select insert mode
EdFlagForceIns Force insert toggle to selected state
EdFlagInsStat Allow insert/overwrite switching
EdFlagFirstClr First character clears field
EdFlagEdKeyExit Allow standard edit key to terminate
EdFlagHideCursor Hide cursor before edit

EdFlagTrimL Remove leading blanks
EdFlagTrimR Remove trailing blanks
EdFlagPadL Pad with leading blanks
EdFlagPadR Pad with trailing blanks
EdFlagUpper Force upper case

The constants for the required flags should be added
together when setting the Flags field of form. Example:

Flags := EdFlagFirstClr + EdFlagHideCursor + EdFlagInsStat;

sets the three flags specified, leaving all other flags
clear.

INSERT AND OVERWRITE MODES

The three flags EdFlagInsert, EdFlagForceIns, and
EdFlagInsStat are used to control the way in which EditString
uses insert and overwrite modes. If all three flags are
clear, overwrite mode is selected. In this mode typed
characters overwrite existing characters in the string;
pressing Backspace moves the cursor to the left and replaces
the character there with a space - it does not "close up" the
string.

If EdFlagInsert is set, insert mode is selected. Typed
characters are inserted at the cursor, pushing everything
beyond the cursor one position to the right (the last
character of the field is lost). Pressing Backspace while in

-58-

insert mode deletes the character to the left of the cursor
and moves everything beyond the cursor back one position.

The two settings described above fix EditString to one
mode or the other; they do not allow the Insert key to be
used to switch modes. If EdFlagInsStat is set, EditString
checks the current Insert lock status each time a character
is typed. This allows the Insert key to be used to toggle
between insert and overwrite modes.

Setting EdFlagForceIns causes the insert lock to be
forced to a known state at the start of the edit, the state
used being that set in EdFlagInsert (i.e. EdFlagForceIns and
EdFlagInsert forces insert mode, but EdFlagForceIns alone
forces overwrite mode). EdFlagInsStat must still be set for
the Insert key to be used to toggle insert mode;
EdFlagForceIns simply ensures that the toggle is set to a
specific value at each call to EditString.

Summary:
No flags

Fix in overwrite mode

EdFlagInsert
Fix in insert mode

EdFlagInsStat
Allow Ins key to toggle mode

EdFlagInsStat + EdFlagForceIns
Allow Ins key toggle, but start in overwite mode

EdFlagInsStat + EdFlagForceIns + EdFlagInsert
Allow Ins key toggle, but start in insert mode

FIELD CLEARING AND EDIT KEYS

The flag EdFlagFirstClr determines the action taken by
EditString when the first key is pressed to start the edit.
By default, the first key pressed is added to the string in
the usual way, either by overwriting the first character or
by being inserted before the first character.

If EdFlagFirstClr is set, the first character typed
causes the field to be cleared. Any cursor movement made
before the first allowable character is typed causes this
blanking to be disabled. This arrangement lets the user edit
the existing string by moving the cursor and making the
changes, but also gives a "clean slate" when entering an
entirely new string.

-59-

In the section Basic editing an example was given which
showed the cursor left and right keys used as exit keys.
This would appear to create a conflict: Both keys are exit
keys and both keys perform cursor movement within the editing
field. EditString usually handles such conflicts in a very
simple way. If the key is the first key pressed after
EditString was called (or the first key pressed after a
restore action has been performed), then the key is treated
as an exit key and terminates the edit accordingly. If the
key is pressed after an edit has started, it is treated as a
cursor-movement key.

Setting the flag EdFlagEdKeyExit causes edit/exit key
conflicts to be handled in quite a different way - the
editing function of any edit key which is defined as an exit
key is simply disabled. The cursor left and right keys in
the above example, therefore, would terminate the edit
whenever they were pressed; it would not be possible to use
the cursor keys to move around the field itself. It is not
advisable to define the Backspace key as an exit key if this
flag is set; doing so would leave the user no easy way to
correct typing errors.

The final item regarding field clearing concerns the
EditKey field in the form record. When EdFlagFirstClr is set
it is possible to edit the existing contents of the field by
moving the cursor with the left or right arrow keys, or by
pressing Home or End. This removes the "not yet edited"
signal and prevents the first allowable character typed from
clearing the field. If the cursor movement keys have all
been defined as exit keys this is not possible, because
pressing any one of them to start editing will cause
EditString to terminate. Pressing a regular character,
however, will cause the existing contents of the edit field
to be deleted.

You may define a key that will allow the user to edit the
existing string in such circumstances by assigning a value to
form.EditKey. Pressing the edit key tells EditString that
the first allowable character typed should not cause the
field to be cleared. You may use EditKey even if the regular
cursor movement keys are not defined as exit keys, and you
can avoid defining an edit key by assigning a code of NUL.

CURSOR CONTROL

By default, EditString does not change the display's
cursor in any way; whatever size cursor is selected when
EditString is called is used throughout the edit.

If you have enabled insert/overwrite switching of the
cursor by setting CursorInsert to true, then the Ins key will

-60-

still change the size of the cursor accordingly. Whether
EditString recognizes this switching depends upon the state
of the appropriate flags in the format record. If your edit
format has fixed insert or overwrite mode and you do not want
the Ins key to change the cursor for the duration of the
edit, you should disable the cursor switching before calling
EditString.

The flag EdFlagHideCrsr in form.Flags allows EditString
to manipulate the cursor to a limited degree. Setting this
flag causes the edit routine to hide the cursor when first
called. As soon as editing starts, by the user moving the
cursor or entering text, the cursor is re-enabled. This
arrangement may be used to keep the cursor hidden while the
user moves up or down to the required field on the screen; it
is turned on only when needed to edit the selected field.
When EditString terminates, the cursor's hide status is reset
to that upon entry.

STRING FORMATTING

Normally, EditString returns with the variable specified
as parameter s set to the exact string that the user typed,
with any leading or trailing spaces included. The string may
vary in length from zero to the value specified in parameter
width.

The flags EdFlagTrimL and EdFlagTrimR allow leading and
trailing spaces, respectively, to be removed from the edited
string. You may set either or both of these flags and when
EditString terminates it will re-write the adjusted string in
the editing field. These flags are useful for trimming
strings entered by the user where extra spaces may cause
alignment problems, for example.

EdFlagPadL and EdFlagPadR perform the converse function
and ensure that the edited string is of the length specified
in parameter width by adding spaces to the beginning (PadL)
or end (PadR) of the string. You may set both flags but
EdFlagPadL takes precedence, so spaces will be added to the
start of the string only.

The trim and pad options may be combined to justify the
edited string. Combining EdFlagTrimL and EdFlagPadR, for
example, ensures that the final string is left-justified by
trimming leading spaces and then adding trailing spaces to
the required field width. A detailed description of the
trim, pad, and justify functions will be found in the STRINGS
unit's documentation.

Finally, the flag EdFlagUpper may be set to force all
alphabetic characters to upper case. EditString usually

-61-

treats upper- and lower-case letters as different; if only
one type is defined in form.AllowChars then the other type
will be rejected. Setting EdFlagUpper causes all lower-case
letters to be converted to capitals before being processed
any further.

MISCELLANEOUS CONFIGURATION CONTROL

The final flag defined by the current version of ENHCON
is EdFlagFlushKB. Setting this flag causes the keyboard
buffer to be flushed at each call to EditString, thus
preventing key-strokes left in the buffer from before the
call from being accepted.

The fields NumFormat and SignalError in form are not used
by EditString. Their use is described in the number-editing
routines.

FUNCTION EditReal (form: EditFormatRec;
VAR r: REAL;
min, max: REAL): CHAR;

This function provides a way to conveniently display and
edit real numbers on the console's display. The real
variable to be edited should be supplied as parameter r and
the cursor should be moved to the first position of the
required field on the screen. The parameters min and max
should be set to numbers representing the minimum and maximum
allowable value for r.

EditReal takes a format record as a parameter, just as
EditString does, and each field of this record controls one
aspect of the way in which EditReal operates. The fields
Attribute, StartChar, EndChar, MarkerAttr, ExitKeys, EditKey,
RestoreKey, and AbortKey work in exactly the same way (see
EditString for details). The characters defined in
AllowChars are ignored; EditReal will accept the characters
necessary to form a valid number. Almost all of the flags
also perform the same functions as in EditString, but the
PadL, PadR, TrimL, and TrimR flags are ignored.

EditReal does, however, use the NumFormat field of form.
NumFormat should be set to a string suitable for passing to
the Format function in the STRINGS unit. This string is used
to determine the way in which the real number is displayed
and follows the rules laid down by the Format function. You
should be thoroughly familiar with the way in which Format
works before attempting to use EditReal.

-62-

The total width of the editing field is determined by
the width specified in NumFormat (i.e. the length of a
string returned by STRINGS.Format). Format is called to
convert the supplied number into a displayable form and
then the user may enter a new number or edit the existing
one. For example, if the string in form.NumFormat was
'+10:3' and the initial value of r was 470.58, then
EditReal would start by displaying a field 10 characters
wide containing " +470.580". Note that you should not
attempt to use vulgar-fraction notation in a format string
passed to EditReal, as the function will not recognize this
format.

Once the user has entered a new value, EditReal adjusts
it to the format specified in NumFormat and terminates. The
existing value may be accepted, of course, by just pressing
one of the exit keys, just as with EditString. (The
numerical edit routines actually convert the number to a
string using Format and then call EditString to perform the
editing.)

Because of the way in which EditReal is written, a
handy programming trick using the plus and minus keys is
possible. It is sometimes useful to be able to enter a
number and terminate its entry by pressing plus or minus.
If the plus and minus keys are defined in form.ExitKeys,
EditReal allows this - the number will be positive or
negative as appropriate and EditReal will return a
character of "+" or "-".

EXPONENTIAL NOTATION

There is one case in which the number initially displayed
by EditReal does not conform to the way in which
STRINGS.Format handles real numbers. If the decimals
specifier in NumFormat is zero (e.g. '12:0' or '12'), then r
is shown in exponential form. The above example of 470.580
would be displayed as " 4.70580E+02" if the field width was
12 characters. When exponential format is used, any other
options listed in NumFormat are also ignored; it is most
unlikely that zero-fill, floating dollar signs, and so on
would be required with such formats anyway.

It is not a good idea to try to use the plus and minus
keys as exit keys when working in exponential format; real
numbers displayed in this form may need two signs, one for
the mantissa and one for the exponent.

-63-

RANGE AND CONVERSION ERRORS

If EditReal cannot successfully convert the number
entered from a string to a real value or if the
converted value is outside the range specified by
parameters min and max, a call to form.SignalError is made.
SignalError is a field which is defined as a procedural
variable - a call to SignalError results in a call to
whatever procedure name was stored in SignalError.

You can use ENHCON's default routine by
assigning StdSignalError in your format record, e.g.

MyFormat.SignalError := StdSignalError;

Under these conditions a conversion or range error
causes EditReal to generate a beep and re-display the
original number so that the user may try again.

In some programs it may be desirable for the computer
to display a short error message on a status line or open a
window on the screen to provide assistance. This can
be done by assigning your own error-handler to
SignalError. There are several conditions which must be
strictly adhered to if your own error routine is not to
upset the operation of EditReal. First, your procedure
must take a single value of type byte as a paramater.
Your procedure heading should look something like this:

PROCEDURE MyRealErrorSignal (width: BYTE);

Second, the procedure must be compiled in the far model
by placing it after a $F+ directive or by having it appear
in the interface section of a unit. This is a
requirement of Turbo Pascal's procedural variables.

Third, your procedure must return with certain aspects of
the display exactly the same as when your routine was called.
Any of the following items which are changed by your routine
should be restored to their original values before
returning: the position of the cursor; the size and hide-
status of the cursor; the value of TextAttr.

When your routine is called the cursor will be
left positioned at the start of the editing field and
paramater width will hold the width of the field. This
enables you to put a short message in the editing field
should you so desire (note that when your routine
returns, however, the edit field will revert back to its
original contents).

-64-

Note that a format record which is to be used by
EditReal must have some valid procedure assigned to its
SignalError field. If a range or conversion error is
detected and this field is uninitialized, a call will be
made to some random address in memory, causing your
program to fail.

FUNCTION EditInt (form: EditFormatRec;
VAR i: LongInt;
min, max: LongInt): CHAR;

EditInt works in a very similar way to EditReal, but
allows integers to be edited. All of the facilities
available in EditString and EditReal are also available in
EditInt, including the use of form.SignalError to install an
error-handling routine for conversion and range errors.

The NumFormat field of form is handled in a
slightly different way by EditInt, however. If the
format string specifies no decimal places, as you would
expect for an integer value, then it is passed to
STRINGS.Format in the usual way. Any of the valid options
of Format may be used. For example, the format string
'6+' would cause the value 45 to be displayed as " 45+".
Note that the total field width is that specified in the
format string, just as with EditReal.

EditInt also provides for an assumed decimal point,
thus allowing an integer variable to hold fixed-decimal-point
values. The format string in NumFormat specifies the number
of assumed decimal places (e.g. '12:3' specifies three
assumed decimal places) and EditInt displays the value
with a decimal point inserted at the appropriate place.
For example, a value of 1,258 is displayed as "12.58" if
two decimal places are specified. Similarly, numbers
entered by the user are converted in a converse
manner, so that "3.47" would be returned as an integer
value of 347 (again assuming that two decimal places
were specified).

A typical example of using assumed decimal places is that
of an accounts program. It is common practice to use a
LongInt-type variable to store amounts of money - this
enables faster integer arithmetic to be employed and
eliminates rounding errors that may appear if real values
were used. An amount of $12.75 would be stored as 1,275,
for example (i.e. the value gives the amount directly in
cents). To display a monetary value and allow the user to
edit it, EditInt may be called with two decimal places
specified. The value is thus presented in the familiar
manner and the user may enter a new value in the same format.

-65-

The following examples should help clarify the use of
assumed decimal places:

Value Format string Displayed as

1,234 10:2 12.34
475 10:1 47.5

2,700 10:4 0.2700

User's entry Format string Returned value

37.05 10:2 3,705
50 10:5 5,000,000
4.6 10:3 4,600

Any of the display options that STRINGS.Format accepts
may also be used when specifying assumed decimal
places. For instance, the format "$8:2+" would cause a
value of 500 to be displayed as " $5.00+".

FUNCTION EditDate (form:EditFormatRec; VAR Dt:DateRec): CHAR;
FUNCTION EditTime (form:EditFormatRec; VAR Tm:TimeRec): CHAR;

These two functions are closely associated with the TIME
unit and allow console editing of a date or time. You
should be thoroughly familiar with the TIME unit before
attempting to use either of these routines.

The values passed in parameter form control the edit in
the same way as they do for EditString, with the
exception that characters specified in AllowChars are
ignored (both routines automatically accept the necessary
characters to form a date or time). The cursor should be
positioned at the start of the required editing field
before calling EditDate or EditTime and the date or time to
be edited should be suplied as parameter Dt or Tm,
respectively.

EditDate converts parameter Dt into a displayable date
by calling the DateStr function in the TIME unit. The exact
format of the string is, therefore, determined by
the current configuration of the unit. DateStr returns a
string with a maximum length of nine characters, so EditDate
automatically uses an editing field of this width. The
new, or edited, string entered by the user is converted
back to a date record by calling the TIME unit's DateParse
function. Again, the way in which DateParse processes
the string is dependent upon the current settings in the

-66-

TIME unit itself.

In a similar way, EditTime converts parameter Tm
into a displayable string by calling the TimeStr function
in the TIME unit and processes the user's input by calling
TimeParse. As with EditDate, the exact format used is
dependent upon the current settings in the TIME unit, but
EditTime always uses an editing field 13 characters wide
(the maximum length of a variable of type TimeString).

The SignalError field of parameter form is used the same
way as in the edit number routines. You should assign
either StdSignalError or your own error-handler to this
field; the specified procedure is called whenever the
entered date or time cannot be successfully converted. All
rules regarding the use of this facility are the same as for
the number routines (see Range and conversion errors in
EditReal). The NumFormat field of form is ignored by
EditDate and EditTime.

USING DISPLAY WINDOWS

Up to 255 user-defined windows are available; window zero
is pre-defined and refers to the whole screen.

The data type WindowDefinition is used to hold all the
basic information required to define a window.
WindowDefinition is dependent upon two other data
types: WindowBorder and WindowJustify.

WindowBorder = ARRAY[1..8] OF CHAR;
WindowJustify = (WJustLeft, WJustCenter, WJustRight);

WindowDefinition = RECORD
X1, Y1, X2, Y2: BYTE;
DefaultAttr: BYTE;
DefaultCrsrHide: BOOLEAN;
DefaultCrsrSize: BYTE;
Border: WindowBorder;
BorderAttr: BYTE;
HdrText,
FtrText: ConsoleStr;
HdrAttr,
FtrAttr: BYTE;
HdrPos,
FtrPos: WindowJustify;
Flags: BYTE:

END;

-67-

Fields X1 and Y1 specify the top-left corner of the
required window (as column and row respectively), numbered
as for the GotoXY procedure. The standard 80-by-25
display, therefore, has rows numbered 1 through 25 and
columns numbered 1 through 80. Fields X2 and Y2 specify the
bottom-right corner of the required window.

DefaultAttr determines the text attribute that will be
set when the window is opened. Assigning a value of 01
hex., for example, will cause text written into the window
to be underlined on a monochrome display or blue on a color
display.

The two fields DefaultCrsrHide and DefaultCrsrSize are
used to control the cursor. The first determines
whether the particular window has a visible cursor or
not. Setting DefaultCrsrHide to true causes the cursor
to be hidden when the window is opened; setting it to false
ensures that a cursor is visible, even if it was hidden
before the window was opened.

DefaultCrsrSize is used to control the size of the
cursor, and may be set to any valid values for the display
adapter in use. The value used will be passed to the
SetCursor routine when the window is opened; whether the
cursor will actually be visible or not depends upon the
setting of DefaultCrsrHide. There are three key values
which may also be assigned to DefaultCrsrSize and these are
defined as constants:

WCrsrDefault = $FF00;
WCrsrLine = $FE00;
WCrsrBlock = $FD00;

WCrsrLine and WCrsrBlock are provided to allow you to
define a line or block cursor for the window without having
to calculate the actual values (which will vary from one
type of display to another). Assigning one of these
values to DefaultCrsrSize causes the appropriate cursor
size to be set when the window is opened. The constant
WCrsrDefault may be used if the size of the cursor should
remain unchanged; opening the window will still set the
cursor to hidden or visible, but its size will remain
unaltered.

-68-

Two fields control the way in which a border around
the window may be shown on the display. The field Border
allows eight characters to be defined:

Index Position
1 Top left corner
2 Top line
3 Top right corner
4 Right side
5 Bottom right corner
6 Bottom line
7 Bottom left corner
8 Left side

Typed-constants are defined to enable four commonly used
borders to be assigned to Border easily. These are:

Border1 A single-line border
Border2 A double-line border
BorderV1H2 Single vertical, double horizontal lines
BorderH1V2 Single horizontal, double vertical lines

BorderAttr defines the text attribute to be used for
the display of each border character and determines how the
border will appear on the screen. If a window is defined as
not having a border (see description of flags, below) then
the Border and BorderAttr fields are ignored.

Header text can also be placed in the top border of a
window. This text may be used to provide a title for a
menu or other window. The string to be displayed should be
stored in HdrText and the required text attribute for the
title should be assigned to HdrAttr. The HdrPos field
controls the positioning of the text and may be set to
one of three values: WJustLeft, WJustCenter, or
WJustRight. These cause the title to be left-justified,
centered, or right-justified, respectively. If no header
is required, HdrText should be set to a null string and
the HdrAttr and HdrPos fields are then ignored. The
maximum length of the header text is less than the width of
the window's border, because the two corners are not used;
if HdrText is too long it is truncated.

In a similar way, the fields FtrText, FtrAttr, and
FtrPos allow text to overwrite the bottom border of a
window. As with the header definition, setting FtrPos to a
null string prevents any footer from being displayed.

Note that the header and footer options are used only if
the window is defined as having a border. If the window
does not have a border, all six header and footer

-69-

control fields are ignored.

The final field of WindowDefinition contains a collection
of flags. Six are used in the current version of ENHCON
and they are defined as constants. A more detailed
description of each flag is provided in later sections,
but the following summary provides a quick overview.

WFlagClrOpen Clear window on opening
WFlagClrClose Clear window on closing
WFlagClrHide Clear window on hiding
WFlagRestore Restore original when closed/hidden
WFlagShowBrdr Window has border
WFlagWriteBrdr Border can be overwritten

The values for the required flags should be added together
when assigning a value to Flags.

WINDOW ZERO

Window numbers 1 through 255 are available for use by
your application program. Window zero is pre-defined and
represents the entire screen, which will usually be 80
columns by 25 rows.

Window zero is automatically made active at the start of
any program using the ENHCON unit and the cursor and text
attribute will be those in effect when the program was
loaded. It is quite permissible for window zero to be
selected in order to use the full screen as a window, but
no attempt should be made to close, hide, or move window
zero; doing so will generate an error.

PROCEDURE DefineWindow (WindowID: BYTE; d: WindowDefinition);

This procedure should be called to define each window
that your application program requires. A window definition
should be passed as parameter d and the window number as
WindowID. The window number specified may not be a window
that has already been defined and may not be zero.

DefineWindow performs several error checks on the
supplied definition before allowing a new window. Possible
error codes are 01 (Invalid co-ordinates), 02 (Invalid
border co-ordinates), 08 (Illegal window zero operation), 09
(Window already defined), and 10 (Out of memory). The two
errors relating to invalid co-ordinates require some
clarification.

-70-

The co-ordinates (X1, Y1, X2, and Y2) must be within
range for the current display; X1 and Y1 must be less than or
equal to X2 and Y2, respectively. The minimum window
size possible, therefore, is one row by one column and
failure to satisfy these conditions results in error 01. If
the window has a border, the co-ordinates specify the top-
left and bottom-right corners of the border and there must be
at least one row and one column inside the border. Failure
to satisfy this requirement results in error code 02 being
returned.

Note that DefineWindow simply assigns a number to a
specific window definition; it does not cause the window to
be opened on the display.

PROCEDURE OpenWindow (WindowID: BYTE);

Calling this procedure causes a previously defined window
to be opened on the screen. The window number required
should be passed as parameter WindowID. OpenWindow calls
Turbo Pascal's Window procedure to set the co-ordinates of a
new display window and all further output is then sent to
that window instead of the whole screen. The top row and
left column of a window are numbered as one.

Opening a new window causes the text attribute to be set
to that specified by DefaultAttr in the definition, and the
cursor size and hide status to be set to the values
found in DefaultCrsrSize and DefaultCrsrHide (see
Defining a window). This process ensures that the default
cursor and text colors are used whenever a window is opened.

If the flag WFlagClrOpen is set, the newly opened window
is cleared to the new text attribute. If this flag is
clear the current screen contents are left in place; this
gives rise to a "see through" effect. Most programs will
use the former option.

WFlagShowBrdr controls whether a border is drawn around
the new window. Setting this flag to true causes the border,
header, and footer to be written to the screen, as described
earlier. If a border is enabled the flag WFlagWriteBrdr
is also used. A value of false causes the window's co-
ordinates to be set one row and column inside the border, so
that the area inside the border scrolls, leaving the border
intact. A true value for this flag sets the new co-
ordinates on top of the border, allowing the program to
write characters over part of the border. The latter option
is useful for such things as menu option arrows.

-71-

The cursor, whether visible or hidden, is positioned at
the top-left corner of the new window. With a bordered
window this will be on the top-left border character if
WFlagWriteBrdr is true or one column and row inside the
border if WFlagWriteBrdr is false. Finally, OpenWindow makes
the new window active so that further output to the display
is sent to the new window.

Possible error codes returned by OpenWindow are 04
(Window is already open), 08 (Illegal window zero operation),
0A (Window not defined), and 10 (Out of memory).

PROCEDURE SelectWindow (WindowID: BYTE);

This procedure is used to move from one open window
to another. The required window number should be
passed as parameter WindowID. SelectWindow does not change
the contents of any window; it simply allows movement from
one to another.

The ENHCON unit maintains a record of the cursor and
text attribute for each open window. When SelectWindow is
called, the details of the current window are saved, the
requested window is made active, and its cursor and text
attribute are restored. The cursor and text-attribute save
feature ensures that when a window is re-selected
everything is exactly as it was when that particular
window was last used.

It is important to realize that
DefaultAttr, DefaultCrsrSize, and DefaultCrsrHide are used
only by OpenWindow. SelectWindow automatically restores
whatever the last values for the window were; it does not
restore the defaults specified in the window's definition.
If a window is closed and then later re-opened, the
defaults in its definition will be used once again.

Possible error codes returned by SelectWindow are 05
(Window is not open), 07 (Window is hidden), and 0A (Window
not defined).

PROCEDURE CloseWindow (WindowID: BYTE);

This procedure performs the converse function to
OpenWindow and removes a window from the screen. The window
to close should be passed as parameter WindowID.

Two flags in a window's definition affect the way in
which the window is closed: WFlagClrClose and WFlagRestore.

-72-

If both flags are clear the window is considered closed but
the area of the screen it occupied is left unchanged.
Setting WFlagClrClose causes the area previously occupied by
the window to be cleared; the value in DefaultAttr is used
for this operation. Finally, if WFlagRestore is set the
original screen contents are restored. This allows a
window to be "popped up" temporarily over an existing
display.

A list of the order in which windows were opened is
maintaned by the unit. If the window closed by CloseWindow
was not active, the currently active window is not changed.
If the closed window was also the current window, however,
an attempt is made to select whichever window was active
at the time the closed window was opened. This facility
simplifies nested "pop up" menus, and similar constructions,
by avoiding the need to explicitly re-select windows.

Note that if it is not possible to re-select the
previous window (because it has been closed, hidden, or
purged) an error will be generated. If you do not
require this "trace back" facility and want to avoid
errors, you should ensure that when a window is closed it is
not currently active.

It is quite permissible to close a window which is
hidden. Doing so will have no effect on the display and
simply throws away the stored text of the hidden window (see
HideWindow).

Possible error codes returned by CloseWindow are 05
(Window not open), 08 (Illegal window zero operation), 0A
(Window not defined), and 0B (Cannot return to previous
window).

PROCEDURE HideWindow (WindowID: BYTE);
PROCEDURE ShowWindow (WindowID: BYTE);

A window can be removed from the display by calling
the CloseWindow procedure, but its contents will be lost.
HideWindow allows a window to be removed from the screen
but saves its contents so that they may be restored later
by ShowWindow.

Two flags in a window's definition affect the operation
of HideWindow and ShowWindow: WFlagClrHide and
WFlagRestore. The former works in a similar way to
WFlagClrClose with CloseWindow, and the latter is identical.
If both flags are clear, HideWindow stores the window's
contents but leaves the screen unchanged. If WFlagClrHide is
set, the area previously occupied by the window is cleared.

-73-

If WFlagRestore is set, the original screen contents are
restored. If the window to be hidden is currently active,
then window zero is automatically selected.

When a window is recalled with ShowWindow its entire area
is re-drawn - border, header, footer, and text. If the
screen restore feature is in use (i.e. WFlagRestore is
set), then ShowWindow updates the saved area of the original
screen so that CloseWindow will restore the correct text.

Possible error codes returned by HideWindow and
ShowWindow are 05 (Window not open), 08 (Illegal window zero
operation), 0A (Undefined window), and 10 (Out of memory).
HideWindow can also return code 06 (Window already hidden)
and ShowWindow can return 07 (Window not hidden).

PROCEDURE RelocateWindow (WindowID: BYTE; X, Y: BYTE);
PROCEDURE MoveWindow (WindowID: BYTE;

Direction: WindowMovement);

These two routines allow a window to be re-positioned on
the screen. Relocate window takes the co-ordinates
supplied as parameters X and Y and uses them as the new
top-left corner of the window. The new bottom-right co-
ordinates are calculated automatically from the window's
width and height. MoveWindow takes a value of type
WindowMovement which specifies whether the window should be
shifted up or down by one row or left or right by one
column. WindowMovement is declared in the interface as an
enumerated type:

WindowMovement = (WMoveLeft,WMoveRight,WMoveUp,WMoveDown);

Either routine may be called for any window which is
defined. If the window is closed or hidden the changes take
effect when it is next opened or re-displayed. If the
window is open and on display, the move is made
immediately.

Possible error codes are 01 (Invalid co-ordinates),
03 (Cannot move window in specified direction), 08 (Illegal
window zero operation), 0A (Window is undefined), and
10 (Out of memory).

-74-

PROCEDURE WriteWindow (s: ConsoleStr);

Although Turbo Pascal's standard Write and WriteLn
procedures can be used to write text into a window, they
do cause one problem: When an attempt is made to fill the
window down to the last row and column, the whole window
scrolls.

WriteWindow is provided to avoid this problem. The
string supplied as parameter s is written into the window at
the current cursor position and using the current text
attribute, but the cursor is not moved, thus preventing the
window from scrolling. In addition, if the string is too
long to fit between the current cursor position and the edge
of the window, it is truncated.

The only error code that can be returned by WriteWindow
is 10 (Out of memory).

FUNCTION CurrentWindow: BYTE;

This function simply returns the identification number of
the currently active window. If CurrentWindow is called
before any window has been opened, it will return zero,
indicating that window zero (the whole screen) is active.

FUNCTION WindowStat (WindowID: BYTE): WindowStatus;

WindowStatus is an enumerated type declared in the
interface section of the unit:

WindowStatus = (Undefined, Closed, Hidden, Open, Active);

A call to WindowStat returns the status of the specified
window. Note that window zero can only return Open or Active,
because it cannot be closed or hidden, or have its
definition purged.

PROCEDURE PurgeWindow (WindowID: BYTE);

PurgeWindow is used to remove a window's definition from
the ENHCON unit. This facility will not be required
by most programs, but is provided for two reasons: First,
if a window must be re-defined it must be purged before
attempting to call DefineWindow again. Second, in programs
which use a great many windows and must run on a small

-75-

system it may be necessary to reclaim as much working store
as possible when a window is not in use. (Each window
definition takes up almost 200 bytes of heap storage.)

The window number passed to PurgeWindow should
represent a closed, defined window, and possible error
codes are 04 (Window is open), 08 (Illegal window zero
operation), and 0A (Undefined window).

PROCEDURE GetWindowDef (WindowID: BYTE;
VAR d: WindowDefinition);

GetWindowDef is unlikely to be required very often, but
is included for completeness. Calling this routine
causes the definition of the specified window to be returned
in record d.

The only possible error code for GetWindowDef is
0A (Undefined window).

WINDOWS ERROR HANDLING

The ENHCON unit supports a comprehensive error-
handling system for dealing with errors in the windowing
routines.

By default, any windows-related error will terminate
the program with an appropriate message. For example:

ENHCON unit run-time error 0A
Undefined window in OpenWindow

The above message represents an attempt to open a window
which has not been defined. The global variable
EnhConHaltError can be set to a program return code; when a
program is aborted due to an error this value is passed back
to the operating system. (The program return code is
accessible from a batch file using ERRORLEVEL.) The
default value of EnhConHaltError is zero.

Program termination due to error can be avoided by
setting the global variable WindowCheck to false.
Under this configuration each windows routine sets a result
code (very much like the IOResult code in Turbo Pascal). A
program may call the function WindowResult after any other
windows routine in order to check the result of the
operation. The windows routine descriptions, above,
indicate the possible error return codes from each

-76-

routine. A value of zero indicates that the routine was
successful.

The interface section of ENHCON defines several
constants which specify the possible error codes in the
current version:

Constant Value Error
ConErrXY 01 Invalid co-ordinates
ConErrBorderXY 02 Invalid border co-ordinates
ConErrMove 03 Invalid direction
ConErrOpen 04 Window is open
ConErrClose 05 Window not open
ConErrHidden 06 Window is hidden
ConErrNotHidden 07 Window not hidden
ConErrZero 08 Illegal window zero operation
ConErrDefined 09 Window already defined
ConErrUndefined 0A Undefined window
ConErrReturn 0B Cannot return to previous window
ConErrHeap 10 Out of memory
ConErrHelpRead 11 Cannot access help file
ConErrHelpInit 12 Help system already initialized
ConErrNoHelpFile 13 Help file not found
ConErrHelpFormat 14 Invalid format in help file
ConErrHelpIndex 15 Invalid format for help index
ConErrHelpInvalid 16 Help record invalid
ConErrHelpStkFull 17 Help context stack full
ConErrHelpStkEmpty 18 Help context stack empty

Note that errors 11 through 18 hex. relate to the on-line
help system, described in a later section of this manual.

FUNCTION WindowResult: BYTE;

This function is used to obtain the result code of the
last windows routine that was called. WindowResult returns
zero if the last operation was successful or one of the
error codes listed above if it failed for some reason.

All window-related routines cause the result code to be
set. It is not mandatory to call WindowResult after every
windowing operation, but errors will go undetected if a call
is not made. As with Turbo Pascal's own IOResult, calling
WindowResult also resets it to zero. A call to this
function when internal error checking is enabled (i.e.
WindowCheck is true) serves no useful purpose - errors will
cause a program to abort before it can call WindowResult.

-77-

FUNCTION ConErrorMsg (ErrNum: BYTE): ConsoleStr;

This function is provided so that application programs
can display a suitable error message when internal error
trapping is disabled. ConErrorMsg should be given the
result code returned by WindowResult or the help error-
handler as its parameter ErrNum. The returned string
will be one of the error messages listed above.

A parameter value of zero causes the string "Successful"
to be returned and a code which does not specify one of the
errors listed returns "Undefined error".

THE ON-LINE HELP SYSTEM

The help system relies upon the windows routines to
provide "pop up" displays and will most likely be used in
programs which make extensive use of windows. One window
identification number must be set aside for the exclusive
use of the help system.

CREATING THE HELP FILE

The help system requires the help file to be stored on
disk in a special format and a conversion utility is provided
so that the help text can be created using a standard ASCII
editor.

The first line of the text file must contain just a
single number that specifies the number of help sections
required. This number must be in the range 1 through 255.
Following lines may contain any comments you wish to add
to the file for future reference; these comments do not
form part of the help text and will not be stored in the
final help file.

The text for each help section follows the first line or
any comment lines. Each section must start with a
header which includes the section number (represented by
"n") and name:

#n:Section name

Note that the "#" symbol must be in the first column and
be immediately followed by the section number and a colon.
The text following the colon is used as the name for the
section and will appear in the help index. Section names
are limited to a maximum length of 30 characters and will be
truncated if longer.

-78-

The text for the section should immediately follow the
header and be in the form that you wish it to appear in the
help window. There are three restrictions that apply to this
text. First, you should ensure that no help text has a "#"
in the first column, as this will cause the conversion
program to start a new section. Second, no help section may
have more than 1,000 lines of text. Third, any line which
is too long to fit across the help window will be truncated
when it is displayed; you should ensure that your text
fits within the margins of the intended window.

The final section's text should be followed by a "#" on a
new line. You may place any comments after this marker;
all text following it will be ignored when the file is
converted. For example:

3
This text is a comment and will be ignored
#1:First section
This is the help text for section 1.
This section will appear in the index as "First section."
#2:Second section
This is the help text for section 2.
The index will show this section as "Second section."
#3:Third & final
This is the help test for section 3.
The index will read "Third & final."
#
This text is also a comment

Once you have created the help text required you
should convert it to a format suitable for the ENHCON unit
by running the HELPCONV utility. The command syntax for
this program is

HELPCONV input-file output-file

where input-file specifies the path and name of the text file
to be processed. The output-file parameter is optional
and may specify a path, a file name, or both. If no path
is specified the help file will be created in the same
directory as the input file; the file name defaults to the
input file name with the extension changed to "HLP" unless
specified to the contrary.

If the text file is converted successfully, HELPCONV
will display a count of the number of lines processed and
the number of help sections. If the text file is
incorrectly formatted in any way, a format error will be
displayed, showing the line number at which processing
stopped.

-79-

A format error can be due to any of the following:

1. The first line does not specify the number of help
sections or there are fewer help sections in the file than
specified by this number.

2. A section of text does not have a properly formatted
header. The "#" symbol must be in the first column and be
followed by the section number and a colon, with no
intervening blanks.

3. A section is missing or listed out of sequence.
Sections must be listed in ascending numerical order.

4. A section of help text is longer than 1,000 lines.

5. A line in the help text has a "#" in the first column.
If the help text requires this symbol at the start of a
line, precede it with a space.

6. There is no terminating "#" after the last help section.

Once the help conversion utility has been run
successfully, the output file can be used by your program.

PROCEDURE HelpInitialize (h: HelpConfiguration);

The following type declaration appears in the
interface section of the unit:

HelpConfiguration = RECORD
WindowID: BYTE;
HelpFileName: ConsoleStr;
X1, Y1, X2, Y2: BYTE;
NormalAttr,
IndexAttr,
SelectAttr: BYTE;
Border: WindowBorder;
BorderAttr: BYTE;
HdrText, FtrText: ConsoleStr;
HdrPos, FtrPos: WindowJustify;
HdrAttr, FtrAttr: BYTE;
GeneralKey,
ContextKey,
LastHelpKey,
MoveWindowKey: CHAR;
Flags: BYTE;

END;

-80-

Several of the fields are the same as those in a record of
type WindowDefinition. Each field is described in detail
below. A variable of type HelpConfiguration should be
used to set the fields to the required values, then
HelpInitialize should be called to set up the help unit.

The number passed in WindowID is used as the window
number for the "pop up" help window. This number must be in
the range 1 through 255, and your application program should
not attempt to access this window directly (with
DefineWindow, OpenWindow, and so on).

HelpFileName specifies the path and name of the file
that holds the help text. Note that the string supplied
is with reference to the current directory at the time of
the call to HelpInitialize; if the help file is not in the
current directory, HelpFileName should also explicitly
specify the correct drive and path.

X1, Y1, X2, and Y2 operate in the same way as for a
window definition and specify the top-left and bottom-right
corners of the required help window. A help window always
has a border, so the available area for help text will be
two columns and two rows less than the total area of the
window.

NormalAttr specifies the text attribute that will be used
to display regular help text. IndexAttr and SelectAttr
control the way in which the index will appear: The first
specifies the text attribute for unselected index words and
the second specifies the attribute to be used to highlight a
particular entry.

Border and BorderAttr are also identical to a regular
window definition and specify the characters and attribute
to be used when displaying the help window's border.

The unit always defines the help window as having a
border, as this is the usual requirement for a "pop up"
window. It is possible to prevent a border from being
displayed, however, should this be required (such as when
using a help window that occupies the full screen).
Setting all eight border characters to a space (32 decimal,
20 hex.) or setting BorderAttr to zero (MonoNone) will
accomplish this. The area that would be occupied by the
border cannot be used, so a standard 80-by-25 display
would have an area of 78 columns by 23 rows available for
the help text.

A help window can have a header and footer, and these
fields are identical in operation to the fields of the same
name in a regular window definition. You can disable a
header or footer by setting HdrText or FtrText (or both)

-81-

to a null string. The header and footer of a help
window are also affected by some other options.

Four fields (GeneralKey, ContextKey, LastHelpKey,
and MoveWindowKey) define which keys will be used to control
the help system. They are described in the section titled
Using help.

Three flags are used by the help system, and these
are defined as constants:

HFlagTitle = $04;
HFlagPageInd = $02;
HFlagPageText = $01;

These values should be added together to set the required
flags.

Setting HFlagTitle causes the name of the currently
displayed help section to be appended to the header text.
If, for example, the current section is named "File
editing" and the string in HdrText is 'Help: ' then the
header would appear as "Help: File editing". When the
index is on display the string 'Index' is used in place of
the section name. If HdrText is a null string then the
header will consist of just the section name.

Setting HFlagPageInd causes up and down page indicators
to be appended to the footer text. These indicators take
the form of two arrows (character codes 24 and 25 decimal,
18 and 19 hex.) which show whether there is more text above
or below the current point. If the flag HFlagPageText is
also set, then the arrows are replaced with "PgUp," "PgDn,"
or "PgUp/PgDn" as appropriate. If FtrText is a null string,
then the footer will consist of just the page up/down
indicators.

Errors in the help system are handled differently to
those caused by a windows routine (see Help error
handling, below). Possible error codes from HelpInitialize
are 01 (Invalid co-ordinates), 02 (Invalid border co-
ordinates), 08 (Illegal attempt to use window zero), 09
(Window already defined), 10 (Out of memory), 11 (Cannot
access help file), 12 (Help system already initialized), 13
(Help file not found), 14 (Format error in help file), 15
(Error in index entry).

-82-

INDEX LAYOUT

It is not necessary to specify how the index is to be
laid out; the unit does this automatically when
HelpInitialize is called. Index layout is determined by
the size of the help window and the length of the
longest section name, and ENHCON will fit as many columns
of index entries across the window as is possible. The help
window must be at least wide enough to hold the longest
section name.

USING HELP

After a call to HelpInitialize has been
completed successfully, the help system is ready for use.
ENHCON monitors keyboard input for the help key, or keys,
by linking into the standard ReadKey function. This
means that all console input should be by way of ReadKey
if on-line help is to be available throughout the program.
On-line help will not be available during any input with
Read or ReadLn.

All the editing routines in the ENHCON unit use ReadKey
and will, therefore, allow the help system to be activated
during an edit.

GENERAL HELP

The key specified in the GeneralKey field of the
help configuration will be trapped by ReadKey and cause the
help index to be displayed. The first index entry is
highlighted and the cursor keys can then be used to select
the required topic from the index. If the window is not
large enough to hold the section name for every topic, the
index is automatically split into pages. The following
keys also have an effect while the index is displayed:

Tab Move forward to next index entry
Shift-Tab Move back to previous index entry
PgDn Move to next index page
PgUp Move to previous index page
Enter Select topic
Esc Leave help system

When a specific topic has been selected with the Enter
key, the index is cleared and the requested text is
displayed. Once again, the text is automatically split
into pages if it is too long for the help window and the
PgUp, PgDn, Home, and End keys allow movement around the
section's text. Pressing Escape causes an immediate exit

-83-

from the help system; pressing the general-help key results
in a return to the index so that another topic may be
selected.

When the help system is left by pressing Escape, the
help window is closed and the original screen restored.
ReadKey waits for another key to be pressed and returns this
key to the calling program (unless help is requested again,
of course). In this way the use of the help system is
completely transparent to the application program.

CONTEXT-SENSITIVE HELP

Many large programs now use a context-sensitive help
system, where requesting help will bring up the help section
appropriate to the current area, or context, of the program.
A code assigned to the ContextKey field of the help
configuration record specifies the key that will activate
context-sensitive help. If context-sensitive help is not
required, the value NUL should be assigned to disable it.

There is a global variable called HelpContext (of type
byte) which determines the current context. Whenever
context-sensitive help is requested, the value in
HelpContext is used to jump straight to a particular help
section. If HelpContext is set to 5, pressing the context-
sensitive help key will cause the help text for the fifth
section to be immediately displayed, bypassing the index.

To implement this scheme effectively requires that a
value be assigned to HelpContext whenever the main program
enters an area which must have a different help section.
The value assigned will be used as the help section for
context-sensitive help until such time as a new value is
assigned. Setting HelpContext to zero causes the context-
sensitive help key to display the index, just as if general
help had been requested. The index is also displayed if
HelpContext does not hold a valid section number at the time
help is requested (e.g. if HelpContext is 20 and the help
text only has 10 sections).

Depending upon the program, it may not be desirable to
have two separate help keys - one for general help and
one for context-sensitive help. If GeneralKey and
ContextKey are set to the same value, pressing the help key
will display the context-sensitive help as usual. If the
key is pressed a second time (i.e. while the help text
is visible), the help window will switch to the index.

It is also possible to disable general help by assigning
NUL to GeneralKey. Under these conditions it will not be
possible to access the index unless context-sensitive help is

-84-

called for when HelpContext is set to zero. This option
could be used if it is unlikely (or undesirable) that the
user will want to "browse" through the help text.

PROCEDURE PushHelpContext (NewContext: BYTE);
PROCEDURE PopHelpContext;

In many applications, a subroutine that requires on-line
help may be called from several different places in the main
program. This requires the assignment of a new value to
HelpContext upon entry to the subroutine, but the original
value must be restored when control passes back to the main
program.

The PushHelpContext and PopHelpContext procedures provide
a simple way to achieve this by way of a help context stack.
A call to PushHelpContext causes the current value of
HelpContext to be saved on the stack; the value passed as
parameter NewContext is then assigned to HelpContext.
Calling PopHelpContext causes the previously stored value to
be retrieved from the stack.

In this way, a commonly used subroutine need only call
PushHelpContext with its appropriate context number upon
entry and make a call to PopHelpContext before returning.

The stack has a maximum storage capacity of 127 numbers,
which should be adequate for even the most complex
application. PushHelpContext can return an error code of 17
(ConErrHelpStkFull) if the stack is full, and PopHelpContext
can return an error of 18 (ConErrHelpStkEmpty) if there are
no numbers currently stored on the stack.

Note that calls to either procedure are simply ignored if
the help system is not initialized. This prevents calls from
halting the application program if it is running without on-
line help.

LAST-HELP FACILITY

One other way to activate the help system is provided:
If LastHelpKey is assigned a key value, pressing the
specified key will cause the last help text read to be re-
displayed. It does not matter whether the last help access
was from the index or by way of context-sensitive help;
whichever section was on display when the help window was
removed will be recalled. The user may then move around the
text, press Escape to leave the help system, or press the
general-help key to view the help index.

-85-

Setting LastHelpKey and GeneralKey to the same value
will cause the specified key to activate the last-help
facility. A second press of the key will then cause a
switch to the index. If the last-help facility is not
required, LastHelpKey should be assigned a value of NUL.

MOVING THE HELP WINDOW

The initial position of the help window is determined by
the co-ordinates passed to HelpInitialize in the
configuration record. In some programs it is desirable to
allow the window to be moved by the user - so that it does
not obscure other text, for example.

If a key code is assigned to the MoveWindowKey field of
the configuration record, the specified key can be used to
toggle the cursor key mode. Whenever the help system is
activated (by pressing the general-help, context-help, or
last-help key), the cursor keys allow selection of an index
entry. After presssing the move-window key the cursor keys
move the help window around the screen, whether the current
help window is displaying the index or the text for a
specific topic. Pressing the move-window key a second time
fixes the window in its new position and returns the
cursor keys to normal. If the user leaves the help system,
the new position for the window is retained so that
further calls to the help system will use the user's choice
of window position.

There is one "special" value that may be assigned
to MoveWindowKey. Assigning the constant HMoveScroll
(character code 255 decimal, FF hex.) causes the scroll
lock status to be used to determine the cursor-key mode.
When scroll lock is on, the cursor keys move the help
window; when scroll lock is off they allow movement around
the index as usual.

Finally, if MoveWindowKey is assigned NUL it will not
be possible for the help window to be moved from its
initial position.

PROCEDURE HelpReset;

Most programs will initialize the help system once and
then leave it in place. A call to HelpReset will allow
the help system to be removed, should this be necessary.
Possible reasons would be to reclaim memory space or to
switch to a different help file (an advanced user's text
in place of novice text, for example). After resetting
the help system, no help will be available until

-86-

HelpInitialize is called to install a new help system.

One possible use of this technique is to separate help
into distinct modules. An accounts program, for example,
could have three main modules: Accounts receivable,
accounts payable, and general ledger. Three help files
would be provided on the disk, one for each module, and
the entry code to each module would initialize the help
system with the appropriate file. Requesting the help index
while in accounts receivable would then only show help
sections relevant to that module; help relating to accounts
payable and the general ledger would not clutter the index.

This method also allows each module to have up to 255
help sections (rather than there being 255 sections for
the whole program), so long as the help text can be neatly
divided into two or more separate indexes.

HELP SYSTEM ERROR HANDLING

By default, the ENHCON unit performs its own internal
error checking on the help system and will abort a
program with an appropriate message if an error occurs. For
example:

ENHCON unit run-time error 11
Cannot access help file in HelpInitialize

The interface section of the unit defines constants
which represent the possible errors; these are listed
above in the Windows error handling section.

The description of HelpInitialize, above, indicates
possible results from an attempt to initialize the help
system. Once the help system is set up, an error may be
generated during a request for help. Such errors are
limited to three types: ConErrHelpRead,
ConErrHelpInvalid, and ConErrHeap.

ConErrHelpRead is generated when the help file has
been corrupted. It usually indicates that a record in the
file is missing or of an incorrect format.
ConErrHelpInvalid indicates that the unit's record of the
help system is corrupt. This error is likely if your program
attempts to manipulate the help window directly (with
OpenWindow, HideWindow, etc.). ConErrHeap is generated
when a request for heap storage fails, indicating that the
system is out of free memory.

In addition to providing internal error checking, the
help system also allows a program to install its own error

-87-

handler by way of the global procedural variable HelpError.
The applicable declarations in the interface are as follows:

TYPE
HelpErrorProc = PROCEDURE (HErr: BYTE);

VAR
HelpError: HelpErrorProc;

HelpError is initialized to the ENHCON's own error handler
and if this is all that is required there is no need to
make any assignment to HelpError.

A different error handler can be installed by
writing a procedure which takes a single byte-sized
parameter and assigning this procedure to HelpError.
Example:

{$F+}
PROCEDURE MyHelpError (ErrCode: BYTE);

BEGIN
.
.
END;

{$F-}

BEGIN { Main code }
HelpError := MyHelpError;
.
.
.

Note that the error-handling routine must be compiled as a
far subroutine; this is a requirement of Turbo Pascal's
procedural variables.

When an error occurs in the help system a call is made
to HelpReset to reset the help system. Control is then
passed to your own error hander, which may take any
action considered necessary for the particular program. The
automatic reset of the help system enables many errors to be
handled in a simple manner. If, for example, the user has
removed the diskette containing the help file, the error
"Cannot access help file" is generated. The error routine
could open a window on the screen, request the user to re-
insert the appropriate diskette, and then call
HelpInitialize to re-load the help text.

-88-

There is one exception to the automatic reset-on-
error process: If HelpInitialize is called when the help
system is already initialized, no reset action will take
place. When your own help-error handler is called, the
help system will be reset for any error except
ConErrHelpInit.

RESTRICTIONS AND TEXTMODE

There are two restrictions which should be observed
when using the ENHCON unit. First, the unit makes
extensive use of Turbo Pascal's Window procedure to set the
size of windows on the screen. You should refrain from
calling Window (in the CRT unit) directly and control all
windowing on the screen using the appropriate routines in
ENHCON. Second, extensive use is made of the heap to
allocate window definitions, saved screen areas, and so on.
The allocation routines used for this are New, Dispose,
GetMem, and FreeMem, and in accordance with
Borland's recommendations your program should not try to
allocate and de-allocate heap storage by using Mark and
Release.

By default, Turbo Pascal generates a run-time error
when a program requests heap space which is not
available. It is possible, however, to disable this
feature by implementing your own heap-error handler
(consult your reference manual for details). If your
own program's error routine causes calls to New or GetMem
which fail to return a nil pointer, then the ENHCON unit
generates its own error message (ConErrHeap, code 10 hex.).
This allows your application program to handle out-of-
memory errors in any way you wish, while ensuring that
ENHCON will always respond appropriately.

Finally, you should be careful when making a call to
the TextMode procedure. Changing to a different text
display mode causes ENHCON to dispose of all window records
and to reset the help system. If you must change modes
within your program, be sure to re-define any windows you
might want for the new mode and re-initialize the help
system.

-89-

-90-

APPENDIX A.
UNIT INTERFACES

===

This appendix summarizes the interface section for each
unit in the library.

UNIT STRINGS;

{$L SUCASE}
{$L SUTRIM}
{$L SUPAD}
{$L SUTRUNC}
{$L SUCNVRT}
{$L SUMISC}

{$V-}

INTERFACE

TYPE
FormatConfigRec = RECORD

Fill,
Currency,
Overflow,
FracSep: CHAR;

END;

CONST
UCaseLetters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
LCaseLetters = 'abcdefghijklmnopqrstuvwxyz';
Letters = UCaseLetters+LCaseLetters;
DecDigits = '0123456789';
HexDigits = '0123456789ABCDEF';
OctDigits = '01234567';
BinDigits = '01';

{ Format symbol record }
FormatConfig: FormatConfigRec =

(Fill: '*';
Currency: '$';
Overflow: '?';
FracSep: '-');

-91-

FUNCTION LoCase(ch: CHAR): CHAR;
FUNCTION UpperCase(s: STRING): STRING;
FUNCTION LowerCase(s: STRING): STRING;
FUNCTION DuplChar(ch: CHAR; count: BYTE): STRING;
FUNCTION DuplStr(s: STRING; count: BYTE): STRING;
FUNCTION TrimL(s: STRING): STRING;
FUNCTION TrimR(s: STRING): STRING;
FUNCTION PadL(s: STRING; width: BYTE): STRING;
FUNCTION PadR(s: STRING; width: BYTE): STRING;
FUNCTION TruncL(s: STRING; width: BYTE): STRING;
FUNCTION TruncR(s: STRING; width: BYTE): STRING;
FUNCTION JustL(s: STRING; width: BYTE): STRING;
FUNCTION JustR(s: STRING; width: BYTE): STRING;
FUNCTION JustC(s: STRING; width: BYTE): STRING;
FUNCTION Precede(s,target: STRING): STRING;
FUNCTION Follow(s,target: STRING): STRING;
FUNCTION Break(VAR s: STRING; d: STRING): STRING;
FUNCTION Span(VAR s: STRING; d: STRING): STRING;
FUNCTION Replace(s,srch,repl: STRING): STRING;
FUNCTION Remove(s,srch: STRING): STRING;
FUNCTION StripBit7(s: STRING): STRING;
FUNCTION FileSpecDefault(s,path,name,extn: STRING): STRING;
FUNCTION HexStr(n: WORD; count: BYTE): STRING;
FUNCTION OctStr(n: WORD; count: BYTE): STRING;
FUNCTION BinStr(n: WORD; count: BYTE): STRING;
FUNCTION Format(n: REAL; form: STRING): STRING;

-92-

UNIT MATH;

{$N-}

INTERFACE

TYPE
FLOAT = REAL;

UNIT MATH87;

{$N+}

INTERFACE

TYPE
FLOAT = EXTENDED;

-93-

This section applies to both MATH and MATH87:

FUNCTION FahrToCent(FahrTemp: FLOAT): FLOAT;
FUNCTION CentToFahr(CentTemp: FLOAT): FLOAT;
FUNCTION KelvToCent(KelvTemp: FLOAT): FLOAT;
FUNCTION CentToKelv(CentTemp: FLOAT): FLOAT;
PROCEDURE InchToFtIn(Inches: FLOAT; VAR ft,ins: FLOAT);
FUNCTION FtInToInch(ft,ins: FLOAT): FLOAT;
FUNCTION InchToYard(Inches: FLOAT): FLOAT;
FUNCTION YardToInch(Yards: FLOAT): FLOAT;
FUNCTION InchToMile(Inches: FLOAT): FLOAT;
FUNCTION MileToInch(Miles: FLOAT): FLOAT;
FUNCTION InchToNautMile(Inches: FLOAT): FLOAT;
FUNCTION NautMileToInch(NautMiles: FLOAT): FLOAT;
FUNCTION InchToMeter(Inches: FLOAT): FLOAT;
FUNCTION MeterToInch(Meters: FLOAT): FLOAT;
FUNCTION SqInchToSqFeet(SqInches: FLOAT): FLOAT;
FUNCTION SqFeetToSqInch(SqFeet: FLOAT): FLOAT;
FUNCTION SqInchToSqYard(SqInches: FLOAT): FLOAT;
FUNCTION SqYardToSqInch(SqYards: FLOAT): FLOAT;
FUNCTION SqInchToSqMile(SqInches: FLOAT): FLOAT;
FUNCTION SqMileToSqInch(SqMiles: FLOAT): FLOAT;
FUNCTION SqInchToAcre(SqInches: FLOAT): FLOAT;
FUNCTION AcreToSqInch(Acres: FLOAT): FLOAT;
FUNCTION SqInchToSqMeter(SqInches: FLOAT): FLOAT;
FUNCTION SqMeterToSqInch(SqMeters: FLOAT): FLOAT;
FUNCTION CuInchToCuFeet(CuInches: FLOAT): FLOAT;
FUNCTION CuFeetToCuInch(CuFeet: FLOAT): FLOAT;
FUNCTION CuInchToCuYard(CuInches: FLOAT): FLOAT;
FUNCTION CuYardToCuInch(CuYards: FLOAT): FLOAT;
FUNCTION CuInchToCuMeter(CuInches: FLOAT): FLOAT;
FUNCTION CuMeterToCuInch(CuMeters: FLOAT): FLOAT;
FUNCTION FluidOzToPint(FluidOz: FLOAT): FLOAT;
FUNCTION PintToFluidOz(Pints: FLOAT): FLOAT;
FUNCTION FluidOzToImpPint(FluidOz: FLOAT): FLOAT;
FUNCTION ImpPintToFluidOz(ImpPints: FLOAT): FLOAT;
FUNCTION FluidOzToGals(FluidOz: FLOAT): FLOAT;
FUNCTION GalsToFluidOz(Gals: FLOAT): FLOAT;
FUNCTION FluidOzToImpGals(FluidOz: FLOAT): FLOAT;
FUNCTION ImpGalsToFluidOz(ImpGals: FLOAT): FLOAT;
FUNCTION FluidOzToCuMeter(FluidOz: FLOAT): FLOAT;
FUNCTION CuMeterToFluidOz(CuMeters: FLOAT): FLOAT;
PROCEDURE OunceToLbOz(Ounces: FLOAT; VAR lb,oz: FLOAT);
FUNCTION LbOzToOunce(lb,oz: FLOAT): FLOAT;
FUNCTION OunceToTon(Ounces: FLOAT): FLOAT;
FUNCTION TonToOunce(Tons: FLOAT): FLOAT;
FUNCTION OunceToLongTon(Ounces: FLOAT): FLOAT;
FUNCTION LongTonToOunce(LongTons: FLOAT): FLOAT;
FUNCTION OunceToGram(Ounces: FLOAT): FLOAT;
FUNCTION GramToOunce(Grams: FLOAT): FLOAT;

-94-

UNIT TIME;

{$V-}

{$L DATE}
{$L TIME}

INTERFACE

USES
DOS;

TYPE
DateString = STRING[9];
TimeString = STRING[13];

DateRec = RECORD
M,D: BYTE;
Y: WORD;

END;

TimeRec = RECORD
H,M,S: BYTE;

END;

CONST
DateFormNumeric = 0; TimeFormNormal = 0;
DateFormAlpha = 1; TimeFormNormalSec = 1;
DateFormMDY = 2; TimeFormShort = 2;
DateFormDMY = 3; TimeFormShortSec = 3;
DateFormLower = 4; TimeFormMilitary = 4;
DateFormZeroFill = 8; TimeFormMilitarySec = 5;

TimeFormMilitaryHHMM = 6;
FullDateFormMDY = 0;
FullDateFormDMY = 1;

TimeFormat: BYTE = TimeFormNormal;
DateFormat: BYTE = DateFormNumeric;
FullDateFormat: BYTE = FullDateFormMDY;
TimeDelimiter: CHAR = ':';
DateDelimiter: CHAR = '/';
TimeParseDelims: TimeString = ':., '+#9;
DateParseDelims: DateString = '/-., '+#9;
TimeParseNow: BOOLEAN = FALSE;
DateParseToDay: BOOLEAN = FALSE;
DateParseCurYear: BOOLEAN = FALSE;
DateParseCent21: BYTE = 0;

-95-

PROCEDURE CombineDateTime(VAR DtTm: DateTime;
Dt: DateRec; Tm: TimeRec);

PROCEDURE SplitDateTime(DtTm: DateTime;
VAR Dt: DateRec; VAR Tm: TimeRec);

PROCEDURE GetToDay(VAR Dt: DateRec);
PROCEDURE GetTimeNow(VAR Tm: TimeRec);
PROCEDURE GetDateTime(VAR DtTm: DateTime);
FUNCTION DateValid(Dt: DateRec): BOOLEAN;
FUNCTION TimeValid(Tm: TimeRec): BOOLEAN;
FUNCTION DateTimeValid(DtTm: DateTime): BOOLEAN;
PROCEDURE WordToDate(w: WORD; VAR Dt: DateRec);
FUNCTION DateToWord(Dt: DateRec): WORD;
FUNCTION LeapYear(Y: WORD): BOOLEAN;
FUNCTION TimeAP(Tm: TimeRec): TimeString;
PROCEDURE AdjustDate(VAR Dt: DateRec; n: INTEGER);
PROCEDURE AdjustTime(VAR Tm: TimeRec; n: LongInt);
PROCEDURE AdjustDateTime(VAR DtTm: DateTime; n: LongInt);
PROCEDURE SetLastDay(VAR Dt: DateRec);
FUNCTION DayOfWeek(w: WORD): BYTE;
FUNCTION DayOfWeekStr(d: BYTE): DateString;
FUNCTION MonthStr(M: BYTE): DateString;
FUNCTION DayOfMonthStr(D: BYTE): DateString;
FUNCTION DateStr(Dt: DateRec): DateString;
FUNCTION FullDateStr(Dt: DateRec): STRING;
FUNCTION TimeStr(Tm: TimeRec): TimeString;
FUNCTION DateParse(s: STRING; VAR Dt: DateRec): BOOLEAN;
FUNCTION TimeParse(s: STRING; VAR Tm: TimeRec): BOOLEAN;

-96-

UNIT STDERR;

{$L STDERR}

INTERFACE

PROCEDURE WriteStdErr(s: STRING);

UNIT CRTCLERR;

INTERFACE

TYPE
ErrorString = STRING[20];

PROCEDURE CriticalErrorDOS;
PROCEDURE CriticalErrorTP;
PROCEDURE CriticalErrorOwn(ErrAddr: POINTER);
FUNCTION CriticalErrorMsg(n: BYTE): ErrorString;

-97-

UNIT ENHCON;

{$V-}

{$L CRTVDU}
{$L CRTKB}

INTERFACE

USES
DOS,CRT,STRINGS,TIME;

TYPE
CharSet = SET OF CHAR;
ConsoleStr = STRING[80];

SignalErrorProc = PROCEDURE(width: BYTE);

EditFormatRec =
RECORD

Attribute: BYTE;
StartChar,
EndChar: CHAR;
MarkerAttr: BYTE;
AllowChars,
ExitKeys: CharSet;
EditKey,
RestoreKey,
AbortKey: CHAR;
NumFormat: STRING[12];
SignalError: SignalErrorProc;
Flags: WORD;

END;

WindowStatus = (Undefined,Closed,Hidden,Open,Active);
WindowBorder = ARRAY[1..8] OF CHAR;
WindowJustify = (WJustLeft,WJustCenter,WJustRight);
WindowMovement = (WMoveLeft,WMoveRight,

WMoveUp,WMoveDown);

-98-

WindowDefinition =
RECORD

X1, Y1, X2, Y2: BYTE;
DefaultAttr: BYTE;
DefaultCrsrHide: BOOLEAN;
DefaultCrsrSize: WORD;
Border: WindowBorder;
BorderAttr: BYTE;
HdrText, FtrText: ConsoleStr;
HdrAttr, FtrAttr: BYTE;
HdrPos, FtrPos: WindowJustify;
Flags: BYTE;

END;

HelpConfiguration =
RECORD

WindowID: BYTE;
HelpFileName: ConsoleStr;
X1, Y1, X2, Y2: BYTE;
NormalAttr,
IndexAttr,
SelectAttr: BYTE;
Border: WindowBorder;
BorderAttr: BYTE;
HdrText, FtrText: ConsoleStr;
HdrPos, FtrPos: WindowJustify;
HdrAttr, FtrAttr: BYTE;
GeneralKey,
ContextKey,
LastHelpKey,
MoveWindowKey: CHAR;
Flags: BYTE;

END;

HelpErrorProc = PROCEDURE(HErr: BYTE);

CONST
WFlagClrOpen = $01;

EdFlagTrimL = $0001; WFlagClrClose = $02;
EdFlagTrimR = $0002; WFlagClrHide = $04;
EdFlagPadL = $0004; WFlagRestore = $08;
EdFlagPadR = $0008; WFlagShowBrdr = $10;
EdFlagUpper = $0010; WFlagWriteBrdr = $20;

EdFlagFlushKB = $0100; HFlagPageText = $01;
EdFlagInsert = $0200; HFlagPageInd = $02;
EdFlagForceIns = $0400; HFlagTitle = $04;
EdFlagInsStat = $0800;
EdFlagFirstClr = $1000; WCrsrDefault = $FF00;
EdFlagEdKeyExit = $2000; WCrsrLine = $FE00;
EdFlagHideCrsr = $4000; WCrsrBlock = $FD00;

HMoveScroll = #$FF;

-99-

WBorder1: WindowBorder =
(#218,#196,#191,#179,#217,#196,#192,#179);

WBorder2: WindowBorder =
(#201,#205,#187,#186,#188,#205,#200,#186);

WBorderV1H2: WindowBorder =
(#213,#205,#184,#179,#190,#205,#212,#179);

WBorderH1V2: WindowBorder =
(#214,#196,#183,#186,#189,#196,#211,#186);

MonoNone = $00;
MonoUnderline = $01;
MonoNormal = $07;
MonoIntenseUL = $09;
MonoIntense = $0F;
MonoReverse = $70;

{ ASCII control codes }

NUL = #$00; { Null }
SOH = #$01; { Start Of Header }
STX = #$02; { Start of Text }
ETX = #$03; { End of Text }
EOT = #$04; { End Of Transmission }
ENQ = #$05; { Enquiry }
ACK = #$06; { Acknowledge }
BEL = #$07; { Bell }
BS = #$08; { Backspace }
HT = #$09; { Horizontal Tab }
LF = #$0A; { Line Feed }
VT = #$0B; { Vertical Tab }
FF = #$0C; { Form Feed }
CR = #$0D; { Carriage Return }
SO = #$0E; { Shift Out }
SI = #$0F; { Shift In }
DLE = #$10; { Data Link Escape }
DC1 = #$11; { Device Control 1 }
DC2 = #$12; { Device Control 2 }
DC3 = #$13; { Device Control 3 }
DC4 = #$14; { Device Control 4 }
NAK = #$15; { Negative Acknowledge }
SYN = #$16; { Synchronous idle }
ETB = #$17; { End Transmission Block }
CAN = #$18; { Cancel }
EM = #$19; { End of Medium }
SUB = #$1A; { Substitute }
ESC = #$1B; { Escape }
FS = #$1C; { File Separator }
GS = #$1D; { Group Separator }
RS = #$1E; { Record Separator }
US = #$1F; { Unit Separator }
DEL = #$7F; { Delete }

-100-

PoundSign = #$9C;

StandardChars = [#32..#126];

KeyIns = #$80;
KeyDel = #$81;
KeyUp = #$82;
KeyDown = #$83;
KeyLeft = #$84; KeyCLeft = #$8A;
KeyRight = #$85; KeyCRight = #$8B;
KeyHome = #$86; KeyCHome = #$8C;
KeyEnd = #$87; KeyCEnd = #$8D;
KeyPgUp = #$88; KeyCPgUp = #$8E;
KeyPgDn = #$89; KeyCPgDn = #$8F;

KeyA0 = #$90; KeyAHyphen = #$9A;
KeyA1 = #$91; KeyAEquals = #$9B;
KeyA2 = #$92;
KeyA3 = #$93;
KeyA4 = #$94; KeySTab = #$9D;
KeyA5 = #$95; KeyCPrtSc = #$9E;
KeyA6 = #$96;
KeyA7 = #$97;
KeyA8 = #$98;
KeyA9 = #$99;

KeyF1 = #$A0; KeySF1 = #$B0;
KeyF2 = #$A1; KeySF2 = #$B1;
KeyF3 = #$A2; KeySF3 = #$B2;
KeyF4 = #$A3; KeySF4 = #$B3;
KeyF5 = #$A4; KeySF5 = #$B4;
KeyF6 = #$A5; KeySF6 = #$B5;
KeyF7 = #$A6; KeySF7 = #$B6;
KeyF8 = #$A7; KeySF8 = #$B7;
KeyF9 = #$A8; KeySF9 = #$B8;
KeyF10 = #$A9; KeySF10 = #$B9;

KeyCF1 = #$C0; KeyAF1 = #$D0;
KeyCF2 = #$C1; KeyAF2 = #$D1;
KeyCF3 = #$C2; KeyAF3 = #$D2;
KeyCF4 = #$C3; KeyAF4 = #$D3;
KeyCF5 = #$C4; KeyAF5 = #$D4;
KeyCF6 = #$C5; KeyAF6 = #$D5;
KeyCF7 = #$C6; KeyAF7 = #$D6;
KeyCF8 = #$C7; KeyAF8 = #$D7;
KeyCF9 = #$C8; KeyAF9 = #$D8;
KeyCF10 = #$C9; KeyAF10 = #$D9;

-101-

KeyAA = #$E1; KeyAP = #$F0;
KeyAB = #$E2; KeyAQ = #$F1;
KeyAC = #$E3; KeyAR = #$F2;
KeyAD = #$E4; KeyAS = #$F3;
KeyAE = #$E5; KeyAT = #$F4;
KeyAF = #$E6; KeyAU = #$F5;
KeyAG = #$E7; KeyAV = #$F6;
KeyAH = #$E8; KeyAW = #$F7;
KeyAI = #$E9; KeyAX = #$F8;
KeyAJ = #$EA; KeyAY = #$F9;
KeyAK = #$EB; KeyAZ = #$FA;
KeyAL = #$EC;
KeyAM = #$ED;
KeyAN = #$EE;
KeyAO = #$EF;

{ Error codes }

ConErrXY = $01;
ConErrBorderXY = $02;
ConErrMove = $03;
ConErrOpen = $04;
ConErrClosed = $05;
ConErrHidden = $06;
ConErrNotHidden = $07;
ConErrZero = $08;
ConErrDefined = $09;
ConErrUndefined = $0A;
ConErrReturn = $0B;
ConErrHeap = $10;
ConErrHelpRead = $11;
ConErrHelpInit = $12;
ConErrNoHelpFile = $13;
ConErrHelpFormat = $14;
ConErrHelpIndex = $15;
ConErrHelpInvalid = $16;
ConErrHelpStkFull = $17;
ConErrHelpStkEmpty = $18;

InsKeyEnable: BOOLEAN = FALSE;
CursorInsert: BOOLEAN = FALSE;
WindowCheck: BOOLEAN = TRUE;
EnhConHaltError: WORD = 0;
HelpContext: BYTE = 0;

VAR
HelpError: HelpErrorProc;

-102-

FUNCTION ColorDisplay: BOOLEAN;
FUNCTION MaxCursorSize: BYTE;
PROCEDURE SetCursor(size: WORD);
FUNCTION GetCursor: WORD;
PROCEDURE HideCursor(hide: BOOLEAN);
FUNCTION CursorHidden: BOOLEAN;
PROCEDURE OrigCursor;
PROCEDURE LineCursor;
PROCEDURE BlockCursor;
FUNCTION GetDisplayPage: BYTE;
FUNCTION GetDisplayBase: WORD;
PROCEDURE GetMaxXY(VAR x,y: BYTE);
PROCEDURE FlushKB;
FUNCTION CapsLock: BOOLEAN;
FUNCTION NumLock: BOOLEAN;
FUNCTION ScrollLock: BOOLEAN;
FUNCTION InsertLock: BOOLEAN;
PROCEDURE ForceInsert(Ins: BOOLEAN);
PROCEDURE StdSignalError(width: BYTE);
FUNCTION EditString(form: EditFormatRec;

VAR s: STRING; width: BYTE): CHAR;
FUNCTION EditInt(form: EditFormatRec;

VAR i: LongInt; min,max: LongInt): CHAR;
FUNCTION EditReal(form: EditFormatRec;

VAR r: REAL; min,max: REAL): CHAR;
FUNCTION EditDate(form: EditFormatRec;

VAR Dt: DateRec): CHAR;
FUNCTION EditTime(form: EditFormatRec;

VAR Tm: TimeRec): CHAR;
FUNCTION WindowResult: BYTE;
FUNCTION ConErrorMsg(ErrNum: BYTE): ConsoleStr;
PROCEDURE GetWindowDef(WindowID: BYTE;

VAR d: WindowDefinition);
FUNCTION WindowStat(WindowID: BYTE): WindowStatus;
FUNCTION CurrentWindow: BYTE;
PROCEDURE DefineWindow(WindowID: BYTE; d: WindowDefinition);
PROCEDURE PurgeWindow(WindowID: BYTE);
PROCEDURE OpenWindow(WindowID: BYTE);
PROCEDURE SelectWindow(WindowID: BYTE);
PROCEDURE CloseWindow(WindowID: BYTE);
PROCEDURE HideWindow(WindowID: BYTE);
PROCEDURE ShowWindow(WindowID: BYTE);
PROCEDURE RelocateWindow(WindowID: BYTE; X,Y: BYTE);
PROCEDURE MoveWindow(WindowID: BYTE;

Direction: WindowMovement);
PROCEDURE WriteWindow(s: ConsoleStr);
PROCEDURE HelpReset;
PROCEDURE PushHelpContext(NewContext: BYTE);
PROCEDURE PopHelpContext;
PROCEDURE HelpInitialize(h: HelpConfiguration);
PROCEDURE TextMode(Mode: WORD);
FUNCTION ReadKey: CHAR;

-103-

-104-

APPENDIX B.
CODE DEPENDENCIES

===

TPU DEPENDENCIES

Library unit: Uses units:

STRINGS DOS
MATH/MATH87 No dependencies
TIME DOS, STRINGS
STDERR No dependencies
CRTCLERR DOS
ENHCON DOS, CRT, STRINGS, TIME

ASSEMBLER MODULE DEPENDENCIES

Library unit: Requires OBJ modules:

STRINGS SUCASE, SUTRIM, SUPAD, SUTRUNC,
SUCNVRT, SUMISC

MATH/MATH87 No assembler modules
TIME DATE, TIME
STDERR STDERR
CRTCLERR No assembler modules
ENHCON CRTVDU, CRTKB

OPERATING SYSTEM & FIRMWARE DEPENDENCIES

ENHCON unit requires compatibility at BIOS services
level. All other units require only compatibility at
operating-system level for DOS 2.0 or greater.

HELP CONVERSION UTILITY DEPENDENCY

The following units are required in order to
recompile HELPCONV:

DOS, STDERR, CRTCLERR, STRINGS

-105-

-106-

APPENDIX C.
REVISION HISTORY

===

VERSION 1.0, August 1991

The name of this library package became Turbo Pascal
Library when the code was released to the public domain in
August 1991.

VERSION 1.1, December 1991

The most noticeable change is the integration of ENHCRT,
WINDOWS, and HELP into ENHCON, putting all console-related
routines together into one unit. Programs written with
version 1.0 of Turbo Pascal Library can now have references
to the original three units replaced with a single "USES
ENHCON;" declaration.

The error codes for the old HELP unit have been changed,
to enable them to be integrated with the windows-related
errors. All WErr and HErr codes should be replaced with the
appropriate ConErr code. The function WindowErrorMsg no
longer exists; you should now use the ConErrorMsg function
instead. The two variables WindowHaltError and HelpHaltError
have been replaced with the single variable EnhConHaltError.

After using the help system in version 1.0, ReadKey would
return the value of the help key to the calling program.
This is no longer the case; ReadKey waits for another key to
be pressed before returning.

A bug which prevented the help system from being
activated during an edit routine has been fixed.

A problem may have been encountered with version 1.0 if
your program changed text modes. The WINDOWS unit would
dispose of all window records, thus corrupting the HELP
unit's record of the on-line help system. A call to TextMode
now automatically resets the help system.

The DATE unit has been modified to allow numeric dates to
be forced to American or British format, regardless of what
the system configuration may be. The constants to be
assigned to DateFormat have been altered to accommodate this
change.

The TPU files that were supplied with version 1.0 were
compiled under Turbo Pascal 5.5. To avoid potential
confusion for people using different versions of the
compiler, the TPU files are not now supplied. A batch file

-107-

is now provided which will compile all six units.

You may have also encountered a problem with spacing in
the source code of version 1.0. This was due to the use of
tabs which can be interpreted differently by different
editors. All source code now uses ASCII spaces in place of
tabs to avoid this problem.

VERSION 2.0, May 1993

This major revision of the library has introduced several
additions and changes to units and seen a revision of the
disk distribution arrangement and example support files.
Details of specific changes will be found in the appropriate
section of this manual.

The Format function in the STRINGS unit has been extended
to permit fractions to be displayed in vulgar form as well as
decimals. Several other options have also been added: left-
justification, padding with a definable character, and
absolute value display. The method for using a floating
currency symbol has also been amended slightly, but you will
not need to change your code unless it previously used the
British pounds-sterling sign. This change has also corrected
a bug in earlier versions that prevented a zero-field from
being blanked with the "B" option if the British symbol was
used.

The new units MATH and MATH87 have been added to provide
measurement conversion routines.

The DATE and TIME units have been integrated into a
single unit and several new subroutines have been added.
These changes allow easier mixing of this package's routines
and Turbo Pascal's library routines for handling combined
dates and times. The TimeStr function supports two new
formats, TimeFormShort and TimeFormShortSec. The constants
relating to all time formats have been revised, so you should
check any of your code that uses the old TimeStr function.
Date and time parsing have also been extended to allow null
input to return the current date or time. DateParse will
also now permit date entries to default to the current year
and to allow two-digit entry of 21st century dates. These
options are controlled by global unit variables. The default
character assigned to TimeDelimiter for use by TimeStr is now
a colon if your system is set to American configuration and a
period if it is set to British configuration.

A help-context stack has been added to the ENHCON unit to
simplify the use of context-sensitive help with application
programs that have many subroutines. The procedures

-108-

PushHelpContext and PopHelpContext have been implemented to
support this feature and two new error codes have been added
to the ConErr list. Existing code using version 1.1 of the
library will work without change, although you may wish to
take advantage of the new stack when updating your code.

A bug has also been discovered in ENHCON that prevented
the ConErrHelpInit error code from being reported properly if
a call was made to HelpInitialize when the help system was
already initialized. This has been corrected.

VERSION 2.1, June 1993

A compatibility problem with the new Turbo Pascal 7.0
compiler has been discovered. Earlier versions of the
library will falsely generate an "Out of memory" error when a
null string is passed to the WriteWindow procedure in ENHCON,
due to a change in the GETMEM routine from earlier compilers.
Since WriteWindow is used by the windowing and help routines,
you may have also experienced the same problem with some
other operations when using Turbo Pascal 7.0. Version 2.1 of
the library has corrected this problem.

-109-

-110-

APPENDIX D.
DISTRIBUTION POLICY

===

This package is released for free distribution and use by
individuals or businesses. My reasons for not charging a
registration fee are fairly simple: I am not in a position to
provide full support for any of the software I write. If you
feel that you should make some sort of financial contribution
for the software you use, then I suggest a donation of a few
dollars to a charity.

Although there is no "official" support for this package,
you are welcome to write with any ideas or suggestions. If
you have any problems that you think are caused by a bug in
the software, please feel free to write me and I will try to
help (letters to England from the United States require 50
cents postage for the first half ounce). If you just want to
pass on a short comment or let me know that you find the
software useful, a picture-postcard from your home-town would
be most welcome (40 cents postage).

Please pass on copies of this package to anyone who may
find it useful.

-111-

